Nano Research

, Volume 11, Issue 3, pp 1415–1425 | Cite as

Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors

  • Weidong He
  • Zhifu Liang
  • Keyu Ji
  • Qingfeng SunEmail author
  • Tianyou ZhaiEmail author
  • Xijin XuEmail author
Research Article


Nickel cobalt sulfides (Ni-Co-S) have attracted extensive attention for application in electronic devices owing to their excellent conductivity and high electrochemical capacitance. To facilitate the large-scale practical application of Ni-Co-S, the excellent rate capability and cyclic stability of these compounds must be fully exploited. Thus, hierarchical Ni-Co-S@Ni-W-O (Ni-Co-S-W) core/shell hybrid nanosheet arrays on nickel foam were designed and synthesized herein via a facile three-step hydrothermal method, followed by annealing in a tubular furnace under argon atmosphere. The hybrid structure was directly assembled as a free-standing electrode, which exhibited a high specific capacitance of 1,988 F·g−1 at 2 A·g−1 and retained an excellent capacitance of approximately 1,500 F·g−1 at 30 A·g−1, which is superior to the performance of the pristine Ni-Co-S nanosheet electrode. The assembled asymmetric supercapacitors achieved high specific capacitance (155 F·g−1 at 1 A·g−1), electrochemical stability, and a high energy density of 55.1 W·h·kg−1 at a power density of 799.8 W·kg−1 with the optimized Ni-Co-S-W core/shell nanosheets as the positive electrode, activated carbon as the negative electrode, and 6 M KOH as the electrolyte.


core/shell structure free-standing electrode supercapacitors high energy density excellent stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (No. 51672109), National Basic Research Program of China (No. 2015CB932600), Program for HUST Interdisciplinary Innovation Team (No. 2015ZDTD038) and the Fundamental Research Funds for the Central University (No. 2017KFKJXX007), Natural Science Foundation of Shandong Province for Excellent Young Scholars (No. ZR2016JL015), Scientific Research Foundation of Zhejiang A&F University (No. 2014FR077).

Supplementary material

12274_2017_1757_MOESM1_ESM.pdf (1 mb)
Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors


  1. [1]
    El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.CrossRefGoogle Scholar
  2. [2]
    Tang, S. C.; Zhu, B. G.; Shi, X. L.; Wu, J.; Meng, X. K. General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for highperformance asymmetric all-solid-state pseudocapacitors. Adv. Energy Mater. 2017, 7, 1601985.CrossRefGoogle Scholar
  3. [3]
    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.CrossRefGoogle Scholar
  4. [4]
    Zhu, M. S.; Huang, Y.; Huang, Y.; Pei, Z. X.; Xue, Q.; Li, H. F.; Geng, H. Y.; Zhi, C. Y. Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater. 2016, 26, 4481–4490.CrossRefGoogle Scholar
  5. [5]
    Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.CrossRefGoogle Scholar
  6. [6]
    Liu, L. L.; Niu Z. Q.; Chen J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.CrossRefGoogle Scholar
  7. [7]
    He, W. D.; Wang, C. G.; Li, H. Q.; Deng, X. L.; Xu, X. J.; Zhai, T. Y. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 2017, 1700983.Google Scholar
  8. [8]
    Lu, F.; Zhou, M,; Li, W. R.; Weng, Q. H.; Li, C. L.; Xue, Y. M.; Jiang, X. F.; Zeng, X. H.; Bando, Y.; Golberg, D. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 2016, 26, 313–323.CrossRefGoogle Scholar
  9. [9]
    Li, R.; Wang, S. L.; Huang, Z. C.; Lu, F. X.; He, T. B. NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J. Power Sources 2016, 312, 156–164.CrossRefGoogle Scholar
  10. [10]
    Huang, Y.; Zhu, M. S.; Huang, Y.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Xue, Q.; Zhi, C. Y. Multifunctional energy storage and conversion devices. Adv. Mater. 2016, 28, 8344–8364.CrossRefGoogle Scholar
  11. [11]
    Huang, Y.; Tao, J. Y.; Meng, W. J.; Zhu, M. S.; Huang, Y.; Fu, Y. Q.; Gao, Y. H.; Zhi, C. Y. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525.CrossRefGoogle Scholar
  12. [12]
    Liu, X. X.; Shi, C. D.; Zhai, C. W.; Cheng, M. L.; Liu, Q.; Wang, G. X. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl. Mater. Interfaces 2016, 8, 4585–4591.CrossRefGoogle Scholar
  13. [13]
    He, W. D.; Yang, W. J.; Wang, C. G.; Deng, X. L.; Liu, B. D.; Xu, X. J. Morphology-controlled syntheses of α-MnO2 for electrochemical energy storage. Phys. Chem. Chem. Phys. 2016, 18, 15235–15243.CrossRefGoogle Scholar
  14. [14]
    Dong, L. B.; Xu, C. J.; Li, Y.; Wu, C. L.; Jiang, B. Z.; Yang, Q.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv. Mater. 2016, 28, 1675–1681.CrossRefGoogle Scholar
  15. [15]
    Yang, J.; Yu, C.; Fan, X. M.; Zhao, C. T.; Qiu, J. S. Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 2015, 25, 2109–2116.CrossRefGoogle Scholar
  16. [16]
    Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.CrossRefGoogle Scholar
  17. [17]
    Guo, K.; Ma, Y.; Li, H. Q.; Zhai, T. Y. Flexible wire-shaped supercapacitors in parallel double helix configuration with stable electrochemical properties under static/dynamic bending. Small 2016, 12, 1024–1033.CrossRefGoogle Scholar
  18. [18]
    Wu, X.; Han, Z. C.; Zheng, X.; Yao, S. Y.; Yang, X.; Zhai, T. Y. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 2017, 31, 410–417.CrossRefGoogle Scholar
  19. [19]
    Zhu, J.; Tang, S. C.; Wu, J.; Shi, X. L.; Zhu, B. G.; Meng, X. K. Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4–NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 2017, 7, 1601234.CrossRefGoogle Scholar
  20. [20]
    Hou, L. R.; Shi, Y. Y.; Zhu, S. Q.; Rehan, M.; Pang, G.; Zhang, X. G.; Yuan, C. Z. Hollow mesoporous hetero- NiCo2S4/Co9S8 submicro-spindles: Unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 133–144.CrossRefGoogle Scholar
  21. [21]
    Dai, S. G.; Zhao, B. T.; Qu, C.; Chen, D. C.; Dang, D.; Song, B.; de Glee, B. M.; Fu, J. W.; Hu, C. G.; Wong, C. P. et al. Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy 2017, 33, 522–531.CrossRefGoogle Scholar
  22. [22]
    Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008.CrossRefGoogle Scholar
  23. [23]
    Li, Y. J.; Wang, G. L.; Wei, T.; Fan, Z. J.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165–175.CrossRefGoogle Scholar
  24. [24]
    Xie, X. Q.; Makaryan, T.; Zhao, M. Q.; Van Aken, K. L.; Gogotsi, Y.; Wang, G. X. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502161.CrossRefGoogle Scholar
  25. [25]
    Ji, H. M.; Liu, C.; Wang, T.; Chen, J.; Mao, Z. N.; Zhao, J.; Hou, W. H.; Yang, G. Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small 2015, 11, 6480–6490.CrossRefGoogle Scholar
  26. [26]
    Nguyen, V. H.; Shim, J. J. In situ growth of hierarchical mesoporous NiCo2S4@MnO2 arrays on nickel foam for high-performance supercapacitors. Electrochim. Acta 2015, 166, 302–309.CrossRefGoogle Scholar
  27. [27]
    Hu, W.; Chen, R. Q.; Xie, W.; Zou, L. L.; Qin, N.; Bao, D. H. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl. Mater. Interfaces 2014, 6, 19318–19326.CrossRefGoogle Scholar
  28. [28]
    Khani H.; Wipf, D. O. Iron oxide nanosheets and pulseelectrodeposited Ni–Co–S nanoflake arrays for highperformance charge storage. ACS Appl. Mater. Interfaces 2017, 9, 6967–6978.CrossRefGoogle Scholar
  29. [29]
    Yang, J.; Yu, C.; Fan, X. M.; Liang, S. X.; Li, S. F.; Huang, H. W.; Ling, Z.; Hao, C.; Qiu, J. S. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for highperformance asymmetric supercapacitors. Energy Environ. Sci. 2016, 9, 1299–1307.CrossRefGoogle Scholar
  30. [30]
    Li, X. M.; Li, Q. G.; Wu, Y.; Rui, M. C.; Zeng, H. B. Two-dimensional, porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 19316–19323.CrossRefGoogle Scholar
  31. [31]
    Guan, C.; Xia, X. H.; Meng, N.; Zeng, Z. Y.; Cao, X. H.; Soci, C.; Zhang, H.; Fan, H. J. Hollow core-shell nanostructure supercapacitor electrodes: Gap matters. Energy Environ. Sci. 2012, 5, 9085–9090.CrossRefGoogle Scholar
  32. [32]
    Li, Y.; Xu, J.; Feng, T.; Yao, Q. F.; Xie, J. P.; Xia, H. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 2017, 21, 1606728.CrossRefGoogle Scholar
  33. [33]
    Lin, L. Y.; Tang, S.; Zhao, S. Q.; Peng, X. H.; Hu, N. Hierarchical three-dimensional FeCo2O4@MnO2 core-shell nanosheet arrays on nickel foam for high-performance supercapacitor. Electrochim. Acta 2017, 228, 175–182.CrossRefGoogle Scholar
  34. [34]
    Zhou, S. S.; Chen, J. N.; Gan, L.; Zhang, Q.; Zheng, Z.; Li, H. Q.; Zhai, T. Y. Scalable production of self-supported WS2/CNFs by electrospinning as the anode for highperformance lithium-ion batteries. Sci. Bull. 2016, 61, 227–235.CrossRefGoogle Scholar
  35. [35]
    Wang, X.; Zhang, S. W.; Shao, M. H.; Huang, J. Z.; Deng, X. L.; Hou, P. Y.; Xu, X. J. Fabrication of ZnO/ZnFe2O4 hollow nanocages through metal organic frameworks route with enhanced gas sensing properties. Sensor Actuat. B Chem. 2017, 251, 27–33.CrossRefGoogle Scholar
  36. [36]
    Zhou, W. J.; Cao, X. H.; Zeng, Z. Y.; Shi, W. H.; Zhu, Y. Y.; Yan, Q. Y.; Liu, H.; Wang, J. Y.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core-shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216–2221.CrossRefGoogle Scholar
  37. [37]
    Dong, L. B.; Liang, G. M.; Xu, C. J.; Liu, W. B.; Pan, Z. Z.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 2017, 34, 242–248.CrossRefGoogle Scholar
  38. [38]
    Liu, Z. H.; Tian, X. C.; Xu, X.; He, L.; Yan, M. Y.; Han, C. H.; Li, Y.; Yang, W.; Mai, L. Q. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric microsupercapacitors. Nano Res. 2017, 10, 2471–2481.CrossRefGoogle Scholar
  39. [39]
    Zhang, Y. F.; Zuo, L. Z.; Zhang, L. S.; Yan, J. J.; Lu, H. Y.; Fan, W.; Liu, T. X. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res. 2016, 9, 2747–2759.CrossRefGoogle Scholar
  40. [40]
    Lv, Q. Y.; Wang, S.; Sun, H. Y.; Luo, J.; Xiao, J.; Xiao, J. W.; Xiao, F.; Wang, S. Solid-state thin-film supercapacitors with ultrafast charge/discharge based on N-doped-carbontubes/ Au-nanoparticles-doped-MnO2 nanocomposites. Nano Lett. 2016, 16, 40–47.CrossRefGoogle Scholar
  41. [41]
    Wang, J.; Zhang, X.; Wei, Q. L.; Lv, H. M.; Tian, Y. L.; Tong, Z. Q.; Liu, X. S.; Hao, J.; Qu, H. Y.; Zhao, J. P. et al. 3D self-supported nanopine forest-like Co3O4@CoMoO4 core-shell architectures for high-energy solid state supercapacitors. Nano Energy 2016, 19, 222–233.CrossRefGoogle Scholar
  42. [42]
    Chen, S. M.; Yang, G.; Jia Y.; Zheng, H. J. Three-dimensional NiCo2O4@NiWO4 core-shell nanowire arrays for high performance supercapacitors. J. Mater. Chem. A 2017, 5, 1028–1034.CrossRefGoogle Scholar
  43. [43]
    He, G. J.; Li, J. M.; Li, W. Y.; Li, B.; Noor, N.; Xu, K. B.; Hu, J. Q.; Parkin, I. P. One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J. Mater. Chem. A 2015, 3, 14272–14278.CrossRefGoogle Scholar
  44. [44]
    Xu, X. Y.; Gao, J. P.; Huang, G. B.; Qiu, H. X.; Wang, Z. Y.; Wu, J. Z.; Pan, Z.; Xing, F. B. Fabrication of CoWO4@NiWO4 nanocomposites with good supercapacitve performances. Electrochim. Acta 2015, 174, 837–845.CrossRefGoogle Scholar
  45. [45]
    Niu, L. Y.; Li, Z. P.; Xu, Y.; Sun, J. F.; Hong, W.; Liu, X. H.; Wang, J. Q.; Yang, S. R. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 8044–8052.CrossRefGoogle Scholar
  46. [46]
    He, W. D.; Wang, C. G.; Zhuge, F.; Deng, X. L.; Xu, X. J.; Zhai, T. Y. Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 2017, 35, 242–250.CrossRefGoogle Scholar
  47. [47]
    Kuang, M.; Liu, X. Y.; Dong, F.; Zhang, Y. X. Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core-shell arrays on Ni foam for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21528–21536.CrossRefGoogle Scholar
  48. [48]
    Liao, J. Y.; Higgins, D.; Lui, G.; Chabot, V.; Xiao, X. C.; Chen, Z. W. Multifunctional TiO2−C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett. 2013, 13, 5467–5473.CrossRefGoogle Scholar
  49. [49]
    Ma, L. B.; Hu, Y.; Chen, R. P.; Zhu, G. Y.; Chen, T.; Lv, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 2016, 24, 139–147.CrossRefGoogle Scholar
  50. [50]
    Bai, D. X.; Wang, F.; Lv, J. M.; Zhang, F. Z.; Xu, S. L. Triple-confined well-dispersed biactive NiCo2S4/Ni0.96S on graphene aerogel for high-efficiency lithium storage. ACS Appl. Mater. Interfaces 2016, 8, 32853–32861.CrossRefGoogle Scholar
  51. [51]
    Yue, J.; Gu, X.; Jiang, X. L.; Chen, L.; Wang, N. N.; Yang, J.; Ma, X. J. Coaxial manganese dioxide@N-doped carbon nanotubes as superior anodes for lithium ion batteries. Electrochim. Acta 2015, 182, 676–681.CrossRefGoogle Scholar
  52. [52]
    Guo, D.; Zhang, H. M.; Yu, X. Z.; Zhang, M.; Zhang, P.; Li Q. H.; Wang, T. H. Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J. Mater. Chem. A 2013, 1, 7247–7254.CrossRefGoogle Scholar
  53. [53]
    Jin, G. Z.; Xiao, X. X.; Li, S.; Zhao, K. M.; Wu, Y. Z.; Sun, D.; Wang, F. Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim. Acta 2015, 178, 689–698.CrossRefGoogle Scholar
  54. [54]
    Zhao, Y.; Hu, L. F.; Zhao, S. Y.; Wu, L. M. Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv. Funct. Mater. 2016, 26, 4085–4093.CrossRefGoogle Scholar
  55. [55]
    Zhang, Y. B.; Wang, B.; Liu, F.; Cheng, J. P.; Zhang, X. W.; Zhang, L. Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 2016, 27, 627–637.CrossRefGoogle Scholar
  56. [56]
    Wen, Y. X.; Peng, S. L.; Wang, Z. L.; Hao, J. X.; Qin, T. F.; Lu, S. Q.; Zhang, J. C.; He, D. Y.; Fan, X. Y.; Cao, G. Z. Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors. J. Mater. Chem. A 2017, 5, 7144–7152.CrossRefGoogle Scholar
  57. [57]
    Zhang, X. D.; Cui, S. Z.; Wang, N. N.; Hou, H. W.; Chen, W. H.; Mi, L. W. Synergistic Effect Initiating Ni1−xCoxMoO4· xH2O as electrodes for high-energy-density asymmetric supercapacitors. Electrochim. Acta 2017, 228, 274–281.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of Physics and TechnologyUniversity of JinanJinanChina
  2. 2.State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and EngineeringHuazhong University of Science and Technology (HUST)WuhanChina
  3. 3.School of EngineeringZhejiang A & F UniversityHangzhouChina

Personalised recommendations