Skip to main content
Log in

Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of photocatalysts that can effectively harvest visible light is essential for advances in high-efficiency solar-driven hydrogen generation. Herein, we synthesized water soluble CuInS2 (CIS) and Cu-In-Zn-S (CIZS) quantum dots (QDs) by using one-pot aqueous method. The CIZS QDs are well passivated by glutathione ligands and are highly stable in aqueous conditions. We subsequently applied these QDs as a light harvesting material for photocatalytic hydrogen generation. Unlike most small band gap materials that show extremely low efficiency, these new QDs display remarkable energy conversion efficiency in the visible and near-infrared regions. The external quantum efficiency at 650 nm is ∼1.5%, which, to the best of our knowledge, is the highest value achieved until now in the near-infrared region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao. S. S. Semiconductorbased photocatalytic hydrongen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  Google Scholar 

  2. Youngblood, W. J.; Lee, S. H. A.; Maeda, K.; Mallouk, T. E. Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 2009, 42, 1966–1973.

    Article  Google Scholar 

  3. Wu, L. Z.; Chen, B.; Li, Z. J.; Tung, C. H. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Acc. Chem. Res. 2014, 47, 2177–2185.

    Article  Google Scholar 

  4. Han, Z. J.; Eisenberg, R.; Fuel from water: The photochemical generation of hydrogen from water. Acc. Chem. Res. 2014, 47, 2537–2544.

    Article  Google Scholar 

  5. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  Google Scholar 

  6. Zhuang, T.-T.; Liu, Y.; Sun, M.; Jiang, S.-L.; Zhang, M.-W.; Wang, X.-C.; Zhang, Q.; Jiang, J.; Yu, S.-H. A unique ternary semiconductor–(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 11495–11500.

    Article  Google Scholar 

  7. Wang, L.; Fernández-Terán, R.; Zhang, L.; Fernandes, D. L. A.; Tian, L.; Chen, H.; Tian, H. N. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 12306–12310.

    Article  Google Scholar 

  8. Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.

    Article  Google Scholar 

  9. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

    Article  Google Scholar 

  10. Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.

    Article  Google Scholar 

  11. Brown, K. A.; Wilker, M. B.; Boehm, M.; Dukovic, G.; King, P. W. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 2012, 134, 5627–5636.

    Article  Google Scholar 

  12. Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrovic, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.

    Article  Google Scholar 

  13. Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873–6890.

    Article  Google Scholar 

  14. Brown, K. A.; Dayal, S.; Ai, X.; Rumbles, G.; King, P. W. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 2010, 132, 9672–9680.

    Article  Google Scholar 

  15. Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

    Article  Google Scholar 

  16. Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. R. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2, 3344–3351.

    Article  Google Scholar 

  17. Cao, Y. T.; Geng, W.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Liu, L. M.; Wu, L.-Z.; Tung, C.-H.; Yin, Y. D.; Zhang, T. R. Thiolate-mediated photoinduced synthesis of ultrafine Ag2S quantum dots from silver nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 14952–14957.

    Article  Google Scholar 

  18. Han, K.; Wang, M.; Zhang, S.; Wu, S.; Yang, Y.; Sun, L. C. Photochemical hydrogen production from water catalyzed by CdTe quantum dots/molecular cobalt catalyst hybrid systems. Chem. Commun. 2015, 51, 7008–7011.

    Article  Google Scholar 

  19. Das, A.; Han, Z. J.; Haghighi, M. G.; Eisenberg. R. Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange. Proc. Natl. Acad. Sci. USA 2013, 110, 16716–16723.

    Article  Google Scholar 

  20. Wang, P.; Zhang, J.; He, H. L.; Xu, X. L.; Jin, Y. D. The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H2 photogeneration from water. Nanoscale 2015, 7, 5767–5775.

    Article  Google Scholar 

  21. Wang, P.; Zhang, J.; He, H. L.; Xu. X. L.; Jin, Y. D. Efficient visible light-driven H2 production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel–sulfur complex. Nanoscale 2014, 6, 13470–13475.

    Article  Google Scholar 

  22. Li, C.-B.; Li, Z.-J.; Yu, S.; Wang, G.-X.; Wang, F.; Meng, Q.-Y.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z. Interfacedirected assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy Environ. Sci. 2013, 6, 2597–2602.

    Article  Google Scholar 

  23. Wang, F.; Liang, W. J.; Jian, J. X.; Li, C. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water. Angew. Chem., Int. Ed. 2013, 52, 8134–8138.

    Article  Google Scholar 

  24. Jian, J. X.; Liu, Q.; Li, Z. J.; Wang, F.; Li, X. B.; Li, C. B.; Liu, B.; Meng, Q. Y.; Chen, B.; Feng, K. et al. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nat. Commun. 2013, 4, 2695.

    Article  Google Scholar 

  25. Huang, J. E.; Mulfort, K. L.; Du, P. W.; Chen, L. X. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc 2012, 134, 16472–16475.

    Article  Google Scholar 

  26. Liu, X. Y.; Chen, H.; Wang, R. L.; Shang, Y. Q.; Zhang, Q.; Li, W.; Zhang, G. Z.; Su, J.; Dinh, C. T.; de Arquer, F. P. G. et al. 0D-2D quantum dot: Metal dichalcogenide nanocomposite photocatalyst achieves efficient hydrogen generation. Adv. Mater. 2017, 29, 1605646.

    Article  Google Scholar 

  27. Li, L.; Daou, T. J.; Texier, I.; Chi, T. T. K.; Liem, N. Q.; Reiss, P. Highly luminescent CuInS2/ZnS core/shell nanocrystals: Cadmium-free quantum dots for in vivo imaging. Chem. Mater. 2009, 21, 2422–2429.

    Article  Google Scholar 

  28. Speranskaya, E. S.; Beloglazova, N. V.; Abé, S.; Aubert, T.; Smet, P. F.; Poelman, D.; Goryacheva, I. Y.; De Saeger, S.; Hens, Z. Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay. Langmuir 2014, 30, 7567–7575.

    Article  Google Scholar 

  29. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  30. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  31. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  32. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  33. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  34. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  35. Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233.

    Article  Google Scholar 

  36. Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221–12237.

    Article  Google Scholar 

  37. Torimoto, T.; Kameyama, T.; Kuwabata, S. Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions. J. Phys. Chem. Lett. 2014, 5, 336–347.

    Article  Google Scholar 

  38. Park, J.; Kim, S.-W. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J. Mater. Chem. 2011, 21, 3745–3750.

    Article  Google Scholar 

  39. Zhang, A. D.; Dong, C. Q.; Li, L.; Yin, J. J.; Liu, H.; Huang, X. Y.; Ren, J. C. Non-blinking (Zn)CuInS/ZnS quantum dots prepared by in situ interfacial alloying approach. Sci. Rep. 2015, 5, 15227.

    Article  Google Scholar 

  40. Zhong, H. Z.; Lo, S. S.; Mirkovic, T.; Li, Y. C.; Ding, Y. Q.; Li, Y. F.; Scholes, G. D. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nano 2010, 4, 5253–5262.

    Article  Google Scholar 

  41. De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D’Andrea, C.; Tassone, F.; Manna, L. Strongly fluorescent quaternary Cu–In–Zn–S nanocrystals prepared from Cu1–xInS2 nanocrystals by partial cation exchange. Chem. Mater. 2012, 24, 2400–2406.

    Article  Google Scholar 

  42. Zhang, Y. H.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 2012, 6, 9777–9789.

    Google Scholar 

  43. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

    Article  Google Scholar 

  44. Liu, X.; Zheng, H. F.; Sun, Z. J.; Han, A.; Du, P. W. Earth-abundant copper-based bifunctional electrocatalyst for both catalytic hydrogen production and water oxidation. ACS Catal. 2015, 5, 1530–1538.

    Article  Google Scholar 

  45. Hu, Y.; Gao, X. H.; Yu, L.; Wang, Y. R.; Ning, J. Q.; Xu, S. J.; Lou, X. W. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem., Int. Ed. 2013, 52, 5636–5639.

    Article  Google Scholar 

  46. Susumu, K.; Oh, E.; Delehanty, J. B.; Blanco-Canosa, J. B.; Johnson, B. J.; Jain, V.; Hervey, W. J.; Algar, W. R.; Boeneman, K.; Dawson, P. E. et al. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. J. Am. Chem. Soc. 2011, 133, 9480–9496.

    Article  Google Scholar 

  47. Wang, W. T.; Ji, X.; Kapur, A.; Zhang, C. Q.; Mattoussi, H. A multifunctional polymer combining the imidazole and zwitterion motifs as a biocompatible compact coating for quantum dots. J. Am. Chem. Soc. 2015, 137, 14158–14172.

    Article  Google Scholar 

  48. Rao, P. H.; Yao, W.; Li, Z. C.; Kong, L.; Zhang, W. Q.; Li, L. Highly stable CuInS2@ZnS: Al core@shell quantum dots: The role of aluminium self-passivation. Chem. Commun. 2015, 51, 8757–8760.

    Article  Google Scholar 

  49. Xu, M.; Zai, J. T.; Yuan, Y. P.; Qian, X. F. Band gap-tunable (CuIn)xZn2(1−x)S2 solid solutions: Preparation and efficient photocatalytic hydrogen production from water under visible light without noble metals. J. Mater. Chem. 2012, 22, 23929–23934.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the start-up funding from ShanghaiTech University, the Young 1000 Talents Program, the National Natural Science Foundation of China (Nos. U1632118, 21571129, and 21571129), the National Basic Research Program of China (Nos. 2016YFA0204000 and 2013CB733700), Science and Technology Commission of Shanghai Municipality (Nos. 16JC1402100 and 16520720700) and the National Natural Science Foundation of China for Creative Research Groups (No. 21421004). We thank Dr. Yanyan Jia at the testing center at School of Physical Science and Technology, Protein center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Tao Long or Zhijun Ning.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XY., Zhang, G., Chen, H. et al. Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots. Nano Res. 11, 1379–1388 (2018). https://doi.org/10.1007/s12274-017-1752-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1752-7

Keywords

Navigation