Skip to main content
Log in

Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing a better carbon framework is critical for harnessing the high theoretical capacity of Li-S batteries and avoiding their drawbacks, such as the insulating nature of sulfur, active material loss, and the polysulfide shuttle reaction. Here, we report an ingenious design of hollow carbon nanofibers with closed ends and protogenetic mesopores in the shell that can be retracted to micropores after sulfur infusion. Such dynamic adjustable pore sizes ensure a high sulfur loading, and more importantly, eliminate excessive contact of sulfur species with the electrolyte. Together, the high aspect ratio and thin carbon shells of the carbon nanofibers facilitate rapid transport of Li+ ions and electrons, and the closed-end structure of the carbon nanofibers further blocks polysulfide dissolution from both ends, which is remarkably different from that for carbon nanotubes with open ends. The obtained sulfur-carbon cathodes exhibit excellent performance marked by high sulfur utilization, superior rate capability (1,170, 1,050, and 860 mA·h·g−1 at 1.0, 2.0, and 4.0 C (1 C = 1.675 A·g−1), respectively), and a stable reversible capacity of 847 mA·h·g−1 after 300 cycles at a high rate of 2.0 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

    Article  Google Scholar 

  2. Wang, L. N.; Wang, Y. G.; Xia, Y. Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ. Sci. 2015, 8, 1551–1558.

    Article  Google Scholar 

  3. Li, Z.; Huang, Y. M.; Yuan, L. X.; Hao, Z. X.; Huang, Y. H. Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 2015, 92, 41–63.

    Article  Google Scholar 

  4. Dai, L. M.; Chang, D. W.; Baek, J. B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130–1166.

    Article  Google Scholar 

  5. Borchardt, L.; Oschatz, M.; Kaskel, S. Carbon materials for lithium sulfur batteries—Ten critical questions. Chem.—Eur. J. 2016, 22, 7324–7351.

    Article  Google Scholar 

  6. Wang, J. L.; He, Y. S.; Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015, 27, 569–575.

    Article  Google Scholar 

  7. Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy 2015, 16, 268–280.

    Article  Google Scholar 

  8. Zheng, Z. M.; Guo, H. C.; Pei, F.; Zhang, X.; Chen, X. Y.; Fang, X. L.; Wang, T. H.; Zheng, N. F. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li–S batteries. Adv. Funct. Mater. 2016, 26, 8952–8959.

    Article  Google Scholar 

  9. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  Google Scholar 

  10. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  11. Chen, H. W.; Wang, C. H.; Dong, W. L.; Lu, W.; Du, Z. L.; Chen, L. W. Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett. 2015, 15, 798–802.

    Article  Google Scholar 

  12. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  13. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem., Int. Ed. 2011, 123, 6026–6030.

    Article  Google Scholar 

  14. Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.

    Article  Google Scholar 

  15. Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruña, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium–sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.

    Article  Google Scholar 

  16. Sun, Q.; He, B.; Zhang, X.-Q.; Lu, A.-H. Engineering of hollow core–shell interlinked carbon spheres for highly stable lithium–sulfur batteries. ACS Nano 2015, 9, 8504–8513.

    Article  Google Scholar 

  17. Peng, X.-X.; Lu, Y.-Q.; Zhou, L.-L.; Sheng, T.; Shen, S.-Y.; Liao, H.-G.; Huang, L.; Li, J.-T.; Sun, S.-G. Graphitized porous carbon materials with high sulfur loading for lithium–sulfur batteries. Nano Energy 2017, 32, 503–510.

    Article  Google Scholar 

  18. Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.

    Article  Google Scholar 

  19. Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886–12890.

    Article  Google Scholar 

  20. Mi, K.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium–sulfur batteries. Adv. Funct. Mater. 2016, 26, 1571–1579.

    Article  Google Scholar 

  21. Hu, G. J.; Sun, Z. H.; Shi, C.; Fang, R. P.; Chen, J.; Hou, P. X.; Liu, C.; Cheng, H. M.; Li, F. A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium–sulfur batteries. Adv. Mater. 2017, 29, 1603835.

    Google Scholar 

  22. Jin, F. Y.; Xiao, S.; Lu, L. J.; Wang, Y. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium–sulfur batteries. Nano Lett. 2016, 16, 440–447.

    Article  Google Scholar 

  23. Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.

    Article  Google Scholar 

  24. Zhang, J.; Yang, C.-P.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

    Article  Google Scholar 

  25. Pang, Q.; Kundu, D.; Nazar, L. F. A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Mater. Horiz. 2016, 3, 130–136.

    Article  Google Scholar 

  26. Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D.-W.; Wang, S. G.; Huang, K.; Yin, L.-C.; Li, F.; Cheng, H.-M. A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 2014, 26, 625–631.

    Article  Google Scholar 

  27. He, B.; Li, W.-C.; Yang, C.; Wang, S.-Q.; Lu, A.-H. Incorporating sulfur inside the pores of carbons for advanced lithium–sulfur batteries: An electrolysis approach. ACS Nano 2016, 10, 1633–1639.

    Article  Google Scholar 

  28. Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopaminecoated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano Lett. 2014, 14, 5250–5256.

    Article  Google Scholar 

  29. Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.

    Article  Google Scholar 

  30. Zhou, Y.; Zhou, C. G.; Li, Q. Y.; Yan, C. J.; Han, B.; Xia, K. S.; Gao, Q.; Wu, J. P. Enabling prominent high-rate and cycle performances in one lithium–sulfur battery: Designing permselective gateways for Li+ transportation in holey-CNT/S cathodes. Adv. Mater. 2015, 27, 3774–3781.

    Article  Google Scholar 

  31. Chen, S. Q.; Huang, X. D.; Liu, H.; Sun, B.; Yeoh, W.; Li, K. F.; Zhang, J. Q.; Wang, G. X. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium–sulfur batteries. Adv. Energy Mater. 2014, 4, 1301761.

    Article  Google Scholar 

  32. Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 2014, 4, 1301473.

    Article  Google Scholar 

  33. Zhu, Q. Z.; Zhao, Q.; An, Y. B.; Anasori, B.; Wang, H. R.; Xu, B. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium–sulfur battery. Nano Energy 2017, 33, 402–409.

    Article  Google Scholar 

  34. Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 2014, 8, 9295–9303.

    Article  Google Scholar 

  35. Zhang, X.-Q.; Sun, Q.; Dong, W.; Li, D.; Lu, A.-H.; Mu, J.-Q.; Li, W.-C. Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage. J. Mater. Chem. A 2013, 1, 9449–9455.

    Article  Google Scholar 

  36. de Godoi, F. C.; Wang, D.-W.; Zeng, Q. C.; Wu, K.-H.; Gentle, I. R. Dependence of LiNO3 decomposition on cathode binders in Li–S batteries. J. Power Sources 2015, 288, 13–19.

    Article  Google Scholar 

  37. Li, C. Y.; Ward, A. L.; Doris, S. E.; Pascal, T. A.; Prendergast, D.; Helms, B. A. Polysulfide-blocking microporous polymer membrane tailored for hybrid Li-sulfur flow batteries. Nano Lett. 2015, 15, 5724–5729.

    Article  Google Scholar 

  38. Chung, S.-H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically stable rechargeable lithium–sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 2015, 5, 1500738.

    Article  Google Scholar 

  39. Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L.-M.; Lou, X. W. D. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nat. Commun. 2016, 7, 13065.

    Article  Google Scholar 

  40. Zhu, L.; Peng, H.-J.; Liang, J. Y.; Huang, J.-Q.; Chen, C.-M.; Guo, X. F.; Zhu, W. C.; Li, P.; Zhang, Q. Interconnected carbon nanotube/graphene nanosphere scaffolds as freestanding paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 2015, 11, 746–755.

    Article  Google Scholar 

  41. Ma, L.; Zhuang, H. L.; Wei, S. Y.; Hendrickson, K. E.; Kim, M. S.; Cohn, G.; Hennig, R. G.; Archer, L. A. Enhanced Li–S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 2016, 10, 1050–1059.

    Article  Google Scholar 

  42. Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for highperformance lithium–sulfur batteries. Nat. Commun. 2016, 7, 10601.

    Article  Google Scholar 

  43. Rehman, S.; Tang, T. Y.; Ali, Z.; Huang, X. X.; Hou, Y. L. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 2017, 13, 1700087.

    Article  Google Scholar 

  44. Li, G.-C.; Li, G.-R.; Ye, S.-H.; Gao, X.-P. A polyanilinecoated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238–1245.

    Article  Google Scholar 

  45. Pei, F.; An, T. H.; Zang, J.; Zhao, X. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. From hollow carbon spheres to N-doped hollow porous carbon bowls: Rational design of hollow carbon host for Li–S batteries. Adv. Energy Mater. 2016, 6, 1502539.

    Article  Google Scholar 

  46. Peng, H. J.; Liang, J. Y.; Zhu, L.; Huang, J. Q.; Cheng, X. B.; Guo, X. F.; Ding, W. P.; Zhu, W. C.; Zhang, Q. Catalytic self-limited assembly at hard templates: A mesoscale approach to graphene nanoshells for lithium–sulfur batteries. ACS Nano 2014, 8, 11280–11289.

    Article  Google Scholar 

  47. Zeng, L. C.; Pan, F. S.; Li, W. H.; Jiang, Y.; Zhong, X. W.; Yu, Y. Free-standing porous carbon nanofibers–sulfur composite for flexible Li–S battery cathode. Nanoscale 2014, 6, 9579–9587.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CB934104), the National Natural Science Foundation of China (Nos. 21225312 and 21376047), and Cheung Kong Scholars Program of China (No. T2015036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Hui Lu.

Electronic supplementary material

12274_2017_1737_MOESM1_ESM.pdf

Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XQ., He, B., Li, WC. et al. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 11, 1238–1246 (2018). https://doi.org/10.1007/s12274-017-1737-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1737-6

Keywords

Navigation