Advertisement

Nano Research

, Volume 11, Issue 2, pp 1124–1134 | Cite as

CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor

  • Kailun Xia
  • Chunya Wang
  • Muqiang Jian
  • Qi Wang
  • Yingying ZhangEmail author
Research Article

Abstract

With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Particularly, human fingertip skin, where many epidermal ridges amplify external stimulations, might be a good example to imitate for highly sensitive sensors. In this work, based on unique chemical vapor depositions (CVD)-grown 3D graphene films that mimic the morphology of fingertip skin, we fabricated flexible pressure sensing membranes, which simultaneously showed a high sensitivity of 110 (kPa)−1 for 0–0.2 kPa and wide workable pressure range (up to 75 kPa). Hierarchical structured PDMS films molded from natural leaves were used as the supporting elastic films for the graphene films, which also contribute to the superior performance of the pressure sensors. The pressure sensor showed a low detection limit (0.2 Pa), fast response (< 30 ms), and excellent stability for more than 10,000 loading/unloading cycles. Based on these features, we demonstrated its applications in detecting tiny objects, sound, and human physiological signals, showing its potential in wearable electronics for health monitoring and human/machine interfaces.

Keywords

electronic skin flexible pressure sensor 3D graphene film fingertip skin hierarchical structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 51422204, 51672153 and 51372132) and the National Basic Research Program of China (973 Program) (Nos. 2016YFA0200103 and 2013CB228506).

Supplementary material

12274_2017_1731_MOESM1_ESM.pdf (3.1 mb)
CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor

References

  1. [1]
    Trung, T. Q.; Ramasundaram, S.; Hwang, B. U.; Lee, N. E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 2016, 28, 502–509.CrossRefGoogle Scholar
  2. [2]
    Windmiller, J. R.; Wang, J. Wearable electrochemical sensors and biosensors: A review. Electroanalysis 2013, 25, 29–46.CrossRefGoogle Scholar
  3. [3]
    Shaplov, A. S.; Ponkratov, D. O.; Aubert, P. H.; Lozinskaya, E. I.; Plesse, C.; Vidal, F.; Vygodskii, Y. S. A first truly allsolid state organic electrochromic device based on polymeric ionic liquids. Chem. Commun. 2014, 50, 3191–3193.CrossRefGoogle Scholar
  4. [4]
    Lipomi, D. J.; Tee, B. C. K.; Vosgueritchian, M.; Bao, Z. N. Stretchable organic solar cells. Adv. Mater. 2011, 23, 1771–1775.CrossRefGoogle Scholar
  5. [5]
    Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X. L.; Kim, J. G.; Yoo, S. J.; Uher, C.; Kotov, N. A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–63.CrossRefGoogle Scholar
  6. [6]
    Ahn, J. H.; Je, J. H. Stretchable electronics: Materials, architectures and integrations. J. Phys. D Appl. Phys. 2012, 45, 103001.CrossRefGoogle Scholar
  7. [7]
    Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. S.; Lee, D.; Ko, S. H. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touchpanel application. Adv. Funct. Mater. 2013, 23, 4171–4176.CrossRefGoogle Scholar
  8. [8]
    Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.CrossRefGoogle Scholar
  9. [9]
    Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.CrossRefGoogle Scholar
  10. [10]
    Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826.CrossRefGoogle Scholar
  11. [11]
    Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.CrossRefGoogle Scholar
  12. [12]
    Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. N. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.CrossRefGoogle Scholar
  13. [13]
    Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.CrossRefGoogle Scholar
  14. [14]
    Ghosh, S. K.; Adhikary, P.; Jana, S.; Biswas, A.; Sencadas, V.; Gupta, S. D.; Tudu, B.; Mandal, D. Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring. Nano Energy 2017, 36, 166–175.CrossRefGoogle Scholar
  15. [15]
    Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472–478.CrossRefGoogle Scholar
  16. [16]
    Hou, C. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G.; Zhu, M. F. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv. Mater. 2014, 26, 5018–5024.CrossRefGoogle Scholar
  17. [17]
    Cohen, D. J.; Mitra, D.; Peterson, K.; Maharbiz, M. M. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012, 12, 1821–1825.CrossRefGoogle Scholar
  18. [18]
    Gao, Q.; Meguro, H.; Okamoto, S.; Kimura, M. Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies. Langmuir 2012, 28, 17593–17596.CrossRefGoogle Scholar
  19. [19]
    Jung, S.; Lee, J.; Hyeon, T.; Lee, M.; Kim, D. H. Fabricbased integrated energy devices for wearable activity monitors. Adv. Mater. 2014, 26, 6329–6334.CrossRefGoogle Scholar
  20. [20]
    Nie, B. Q.; Li, R. Y.; Cao, J.; Brandt, J. D.; Pan, T. R. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv. Mater. 2015, 27, 6055–6062.CrossRefGoogle Scholar
  21. [21]
    Yang, Y.; Zhang, H. L.; Lin, Z. H.; Zhou, Y. S.; Jing, Q. S.; Su, Y. J.; Yang, J.; Chen, J.; Hu, C. G.; Wang, Z. L. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 2013, 7, 9213–9222.CrossRefGoogle Scholar
  22. [22]
    Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.CrossRefGoogle Scholar
  23. [23]
    Mandal, D.; Yoon, S.; Kim, K. J. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol. Rapid Commun. 2011, 32, 831–837.CrossRefGoogle Scholar
  24. [24]
    Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive straingauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.CrossRefGoogle Scholar
  25. [25]
    Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.CrossRefGoogle Scholar
  26. [26]
    Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.Google Scholar
  27. [27]
    Choong, C. L.; Shim, M. B.; Lee, B. S.; Jeon, S.; Ko, D. S.; Kang, T. H.; Bae, J.; Lee, S. H.; Byun, K. E.; Im, J. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458.CrossRefGoogle Scholar
  28. [28]
    Luo, N. Q.; Dai, W. X.; Li, C. L.; Zhou, Z. Q.; Lu, L. Y.; Poon, C. C. Y.; Chen, S. C.; Zhang, Y. T.; Zhao, N. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 2016, 26, 1178–1187.CrossRefGoogle Scholar
  29. [29]
    Sheng, L. Z.; Liang, Y.; Jiang, L. L.; Wang, Q.; Wei, T.; Qu, L. T.; Fan, Z. J. Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 2015, 25, 6545–6551.CrossRefGoogle Scholar
  30. [30]
    Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.CrossRefGoogle Scholar
  31. [31]
    Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. An ultrasensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.Google Scholar
  32. [32]
    He, W. N.; Li, G. Y.; Zhang, S. Q.; Wei, Y.; Wang, J.; Li, Q. W.; Zhang, X. T. Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered joule heating. ACS Nano 2015, 9, 4244–4251.CrossRefGoogle Scholar
  33. [33]
    Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 28, 4338–4372.CrossRefGoogle Scholar
  34. [34]
    Jang, H.; Park, Y. J.; Chen, X.; Das, T.; Kim, M. S.; Ahn, J. H. Graphene-based flexible and stretchable electronics. Adv. Mater. 2016, 28, 4184–4202.CrossRefGoogle Scholar
  35. [35]
    Cheng, T.; Zhang, Y. Z.; Lai, W. Y.; Huang, W. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 2015, 27, 3349–3376.CrossRefGoogle Scholar
  36. [36]
    Wang, C. Y.; Li, X.; Gao, E. L.; Jian, M. Q.; Xia, K. L.; Wang, Q.; Xu, Z. P.; Ren, T. L.; Zhang, Y. Y. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 2016, 28, 6640–6648.CrossRefGoogle Scholar
  37. [37]
    Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for highperformance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795.CrossRefGoogle Scholar
  38. [38]
    Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; Xie, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.CrossRefGoogle Scholar
  39. [39]
    Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J. B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano. 2017, 11, 4507–4513.CrossRefGoogle Scholar
  40. [40]
    Wagner, S.; Bauer, S. Materials for stretchable electronics. MRS Bull. 2012, 37, 207–213.CrossRefGoogle Scholar
  41. [41]
    Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. B.; Jeon, S.; Chung, D. Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809.CrossRefGoogle Scholar
  42. [42]
    Tang, Y.; Gong, S.; Chen, Y.; Yap, L. W.; Cheng, W. L. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 2014, 8, 5707–5714.CrossRefGoogle Scholar
  43. [43]
    Zhu, B. W.; Niu, Z. Q.; Wang, H.; Leow, W. R.; Wang, H.; Li, Y. G.; Zheng, L. Y.; Wei, J.; Huo, F. W.; Chen, X. D. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 2014, 10, 3625–3631.CrossRefGoogle Scholar
  44. [44]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  45. [45]
    Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  46. [46]
    Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.CrossRefGoogle Scholar
  47. [47]
    Han, T. H.; Kim, H.; Kwon, S. J.; Lee, T. W. Graphene-based flexible electronic devices. Mat. Sci. Eng. R. 2017, 118, 1–43.CrossRefGoogle Scholar
  48. [48]
    Zheng, Q. B.; Li, Z. G.; Yang, J. H.; Kim, J. K. Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 2014, 64, 200–247.CrossRefGoogle Scholar
  49. [49]
    Sahoo, N. G.; Pan, Y. Z.; Li, L.; Chan, S. H. Graphene-based materials for energy conversion. Adv. Mater. 2012, 24, 4203–4210.CrossRefGoogle Scholar
  50. [50]
    Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 2014, 26, 849–864.CrossRefGoogle Scholar
  51. [51]
    Gao, H. C.; Duan, H. W. 2D and 3D graphene materials: Preparation and bioelectrochemical applications. Biosens. Bioelectron. 2015, 65, 404–419.CrossRefGoogle Scholar
  52. [52]
    Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63–84.CrossRefGoogle Scholar
  53. [53]
    Wang, Z. F.; Huang, Y.; Sun, J. F.; Huang, Y.; Hu, H.; Jiang, R. J.; Gai, W. M.; Li, G. M.; Zhi, C. Y. Polyurethane/ cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl. Mater. Interfaces 2016, 8, 24837–24843.CrossRefGoogle Scholar
  54. [54]
    Bae, G. Y.; Pak, S. W.; Kim, D.; Lee, G.; Kim, D. H.; Chung, Y.; Cho, K. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 2016, 28, 5300–5306.CrossRefGoogle Scholar
  55. [55]
    Chun, S.; Hong, A.; Choi, Y.; Ha, C.; Park, W. A tactile sensor using a conductive graphene-sponge composite. Nanoscale 2016, 8, 9185–9192.CrossRefGoogle Scholar
  56. [56]
    Zhang, H.; Zhang, Y.; Wang, B.; Chen, Z.; Sui, Y.; Zhang, Y.; Tang, C.; Zhu, B.; Xie, X.; Yu, G. et al. Effect of hydrogen in size-limited growth of graphene by atmospheric pressure chemical vapor deposition. J. Electron. Mater. 2015, 44, 79–86.CrossRefGoogle Scholar
  57. [57]
    Yu, Q. K.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J. F.; Su, Z. H.; Cao, H. L.; Liu, Z. H.; Pandey, D.; Wei, D. G. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 2011, 10, 443–449.CrossRefGoogle Scholar
  58. [58]
    Artyukhov, V. I.; Liu, Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136–15140.CrossRefGoogle Scholar
  59. [59]
    Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816–2819.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Kailun Xia
    • 1
  • Chunya Wang
    • 1
  • Muqiang Jian
    • 1
  • Qi Wang
    • 1
  • Yingying Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics (CNMM)Tsinghua UniversityBeijingChina

Personalised recommendations