Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene

Abstract

Si dangling bonds at the interface of quasi-free-standing monolayer graphene (QFMLG) are known to act as scattering centers that can severely affect carrier mobility. Herein, we investigate the atomic and electronic structure of Si dangling bonds in QFMLG using low-temperature scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), and density functional theory (DFT) calculations. Two types of defects with different contrast were observed on a flat graphene terrace by STM and AFM; in particular, their STM contrast varied with the bias voltage. Moreover, these defects showed characteristic STS peaks at different energies, 1.1 and 1.4 eV. The comparison of the experimental data with the DFT calculations indicates that the defects with STS peak energies of 1.1 and 1.4 eV consist of clusters of three and four Si dangling bonds, respectively. The relevance of the present results for the optimization of graphene synthesis is discussed.

References

  1. [1]

    Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

    Article  Google Scholar 

  2. [2]

    Goler, S.; Coletti, C.; Piazza, V.; Pingue, P.; Colangelo, F.; Pellegrini, V.; Emtsev, K. V.; Forti, S.; Starke, U.; Beltram, F.; Heun, S. Revealing the atomic structure of the buffer layer between SiC (0001) and epitaxial graphene. Carbon 2013, 51, 249–254.

    Article  Google Scholar 

  3. [3]

    Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

    Article  Google Scholar 

  4. [4]

    Bocquet, F. C.; Bisson, R.; Themlin, J.-M.; Layet, J.-M.; Angot, T. Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001). Phys. Rev. B 2012, 85, 201401.

    Article  Google Scholar 

  5. [5]

    Speck, F.; Jobst, J.; Fromm, F.; Ostler, M.; Waldmann, D.; Hundhausen, M.; Weber, H. B.; Seyller, T. The quasi-freestanding nature of graphene on H-saturated SiC(0001). Appl. Phys. Lett. 2011, 99, 122106.

    Article  Google Scholar 

  6. [6]

    Ciuk, T.; Caban, P.; Strupinski, W. Charge carrier concentration and offset voltage in quasi-free-standing monolayer chemical vapor deposition graphene on SiC. Carbon 2016, 101, 431–438.

    Article  Google Scholar 

  7. [7]

    Forti, S.; Emtsev, K. V.; Coletti, C.; Zakharov, A. A.; Riedl, C.; Starke, U. Large-area homogeneous quasifree standing epitaxial graphene on SiC(0001): Electronic and structural characterization. Phys. Rev. B 2011, 84, 125449.

    Article  Google Scholar 

  8. [8]

    Murata, Y.; Mashoff, T.; Takamura, M.; Tanabe, S.; Hibino, H.; Beltram, F.; Heun, S. Correlation between morphology and transport properties of quasi-free-standing monolayer graphene. Appl. Phys. Lett. 2014, 105, 221604.

    Article  Google Scholar 

  9. [9]

    Sclauzero, G.; Pasquarello, A. Intercalation of H at the graphene/SiC(0001) interface: Structure and stability from first principles. Appl. Surf. Sci. 2014, 291, 64–68.

    Article  Google Scholar 

  10. [10]

    Deretzis, I.; La Magna, A. Interaction between hydrogen flux and carbon monolayer on SiC(0001): Graphene formation kinetics. Nanoscale 2013, 5, 671–680.

    Article  Google Scholar 

  11. [11]

    Yamasue, K.; Fukidome, H.; Funakubo, K.; Suemitsu, M.; Cho, Y. Interfacial charge states in graphene on SiC studied by noncontact scanning nonlinear dielectric potentiometry. Phys. Rev. Lett. 2015, 114, 226103.

    Article  Google Scholar 

  12. [12]

    Tanabe, S.; Takamura, M.; Harada, Y.; Kageshima, H.; Hibino, H. Effects of hydrogen intercalation on transport properties of quasi-free-standing monolayer graphene. Jpn. J. Appl. Phys. 2014, 53, 04EN01.

    Article  Google Scholar 

  13. [13]

    Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 1998, 73, 3956–3958.

    Article  Google Scholar 

  14. [14]

    Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949–983.

    Article  Google Scholar 

  15. [15]

    Albrecht, T. R.; Grütter, P.; Horne, D.; Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 1991, 69, 668–673.

    Article  Google Scholar 

  16. [16]

    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

    Article  Google Scholar 

  17. [17]

    Cavallucci, T.; Tozzini, V. Multistable rippling of graphene on SiC: A density functional theory study. J. Phys. Chem. C 2016, 120, 7670–7677.

    Article  Google Scholar 

  18. [18]

    Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 1990, 41, 1227–1230.

    Article  Google Scholar 

  19. [19]

    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  20. [20]

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  21. [21]

    Ugeda, M. M.; Fernández-Torre, D.; Brihuega, I.; Pou, P.; Martínez-Galera, A. J.; Pérez, R.; Gómez-Rodríguez, J. M. Point defects on graphene on metals. Phys. Rev. Lett. 2011, 107, 116803.

    Article  Google Scholar 

  22. [22]

    Ugeda, M. M.; Brihuega, I.; Hiebel, F.; Mallet, P.; Veuillen, J.-Y.; Gómez-Rodríguez, J. M.; Ynduráin, F. Electronic and structural characterization of divacancies in irradiated graphene. Phys. Rev. B 2012, 85, 121402.

    Article  Google Scholar 

  23. [23]

    Mashoff, T.; Convertino, D.; Miseikis, V.; Coletti, C.; Piazza, V.; Tozzini, V.; Beltram, F.; Heun, S. Increasing the active surface of titanium islands on graphene by nitrogen sputtering. Appl. Phys. Lett. 2015, 106, 083901.

    Article  Google Scholar 

  24. [24]

    Boneschanscher, M. P.; van der Lit, J.; Sun, Z. X.; Swart, I.; Liljeroth, P.; Vanmaekelbergh, D. Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano 2012, 6, 10216–10221.

    Article  Google Scholar 

  25. [25]

    Schuler, B.; Liu, W.; Tkatchenko, A.; Moll, N.; Meyer, G.; Mistry, A.; Fox, D.; Gross, L. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 2013, 111, 106103.

    Article  Google Scholar 

  26. [26]

    Cavallucci, T.; Murata, Y.; Heun, S.; Tozzini, V. H-coverage defects in quasi free standing graphenemonolayer on SiC: A density functional theory study. in preparation.

  27. [27]

    Zhang, Y. B.; Brar, V. W.; Wang, F.; Girit, C.; Yayon, Y.; Panlasigui, M.; Zettl, A.; Crommie, M. F. Giant phononinduced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nat. Phys. 2008, 4, 627–630.

    Article  Google Scholar 

  28. [28]

    Slawinska, J.; Aramberri, H.; Muñoz, M. C.; Cerdá, J. I. Ab initio study of the relationship between spontaneous polarization and p-type doping in quasi-freestanding graphene on H-passivated SiC surfaces. Carbon 2015, 93, 88–104.

    Article  Google Scholar 

  29. [29]

    Lin, Y. P.; Ksari, Y.; Themlin, J. M. Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): A possible route for the engineering of graphene-based devices. Nano Res. 2015, 8, 839–850.

    Article  Google Scholar 

  30. [30]

    Hiebel, F.; Mallet, P.; Veuillen, J. Y.; Magaud, L. Impact of local stacking on the graphene–impurity interaction: Theory and experiments. Phys. Rev. B 2012, 86, 205421.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge travel support from COST Action MP1103 “Nanostructured materials for solid-state hydrogen storage”. Funding from the European Union Seventh Framework Program under Grant Agreement No. 696656 Graphene Flagship Core1 is also acknowledged. Financial support from the CNR in the framework of the agreements on scientific collaborations between CNR and CNRS (France), NRF (Republic of Korea), and RFBR (Russia) is acknowledged. We also thank the European Research Council (ERC) for funding under the European Union’s Horizon 2020 research and innovation program (No. 670173), the ERC Advanced Grant CEMAS (No. 291194), the ERC Consolidator Grant AMSEL (No. 682144), the EU project PAMS (No. 610446), and the Initial Training Network QTea (No. 317485), and Scuola Normale Superiore for support via the internal project SNS16_ B_HEUN–004155. Furthermore, we acknowledge funding from the Italian Ministry of Foreign Affairs. We gratefully acknowledge CINECA for providing HPC resources under the ISCRA-C grants “Quasifree-standing graphene monolayer on SiC with H-coverage vacancies: a density functional theory study” (2016–2017) and “Electro-mechanical manipulation of graphene” (2015–2016), and for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Heun.

Additional information

This article is published with open access at link.Springer.com

Electronic supplementary material

Rights and permissions

Open Access : This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murata, Y., Cavallucci, T., Tozzini, V. et al. Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene. Nano Res. 11, 864–873 (2018). https://doi.org/10.1007/s12274-017-1697-x

Download citation

Keywords

  • quasi-free-standing monolayer graphene
  • hydrogen intercalation
  • carrier mobility
  • scanning tunneling microscopy
  • scanning tunneling spectroscopy
  • atomic force microscopy
  • density functional theory