Skip to main content
Log in

Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): A possible route for the engineering of graphene-based devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The hydrogenation at various temperatures of the (6√3 × 6√3)R30° reconstruction of SiC(0001), the so-called buffer layer graphene (BLG), is investigated. For the BLG, a significant concentration of remaining dangling bonds related to unsaturated Si atoms of the outermost SiC bilayer is evidenced in the inverse photoemission spectra. These dangling bonds give rise to a peak around 1 eV above the Fermi level, associated with the upper single-electron states of a Mott-Hubbard insulator, which vanishes upon hydrogenation. Hydrogen atoms adsorbed at ambient temperature remain covalently bound to BLG (H-BLG) up to temperatures of ∼500 °C. They induce additional C-Si bonds at the BLG/SiC interface that saturate the remaining Si dangling bonds, as evidenced in both IPES and Auger electron spectra. The H-BLG further shows a large energy gap and an excess n-type doping in comparison to the pristine BLG. Upon hydrogen exposure at higher temperature (> 700 °C), hydrogen atoms intercalate at the BLG/SiC interface, inducing the formation of a single layer of quasi-free-standing graphene (QFSG) lying on top of a hydrogenated (√3 × √3)R30° reconstruction as supported by IPES. We suggest that the high-stability and the distinct electronic structure of both BLG-derived structures, H-BLG and QFSG, may open a route for the engineering of graphene-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    Article  Google Scholar 

  3. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  Google Scholar 

  4. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  Google Scholar 

  5. Wu, J. B.; Becerril, H. A.; Bao, Z. N.; Liu, Z. F.; Chen, Y. S.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 2008, 92, 263302.

    Article  Google Scholar 

  6. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  Google Scholar 

  7. Darkrim Lamari, F.; Levesque, D. Hydrogen adsorption on functionalized graphene. Carbon 2011, 49, 5196–5200.

    Article  Google Scholar 

  8. Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.

    Article  Google Scholar 

  9. Riedl, C.; Coletti, C.; Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0001): A review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D: Appl. Phys. 2010, 43, 374009.

    Article  Google Scholar 

  10. Forbeaux, I.; Themlin, J. M.; Debever, J. M. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 1998, 58, 16396–16406.

    Article  Google Scholar 

  11. Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasifree-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

    Article  Google Scholar 

  12. Sclauzero, G.; Pasquarello, A. Carbon rehybridization at the graphene/SiC(0001) interface: Effect on stability and atomic-scale corrugation. Phys. Rev. B 2012, 85, 161405.

    Article  Google Scholar 

  13. Bocquet, F. C.; Bisson, R.; Themlin, J. M.; Layet, J. M.; Angot, T. Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001). Phys. Rev. B 2012, 85, 201401.

    Article  Google Scholar 

  14. Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

    Article  Google Scholar 

  15. Haberer, D.; Vyalikh, D. V.; Taioli, S.; Dora, B.; Farjam, M.; Fink, J.; Marchenko, D.; Pichler, T.; Ziegler, K.; Simonucci, S. et al. Tunable band gap in hydrogenated quasi-free-standing graphene. Nano Lett. 2010, 10, 3360–3366.

    Article  Google Scholar 

  16. Bocquet, F. C.; Bisson, R.; Themlin, J. M.; Layet, J. M.; Angot, T. Deuterium adsorption on (and desorption from) SiC(0001)-(3 × 3), (√3 × √3)R30°, (6√3 × 6√3)R30° and quasi-free-standing graphene obtained by hydrogen intercalation. J. Phys. D: Appl. Phys. 2014, 47, 094014

    Article  Google Scholar 

  17. Ao, Z. M.; Hernández-Nieves, A. D.; Peeters, F. M.; Li, S. Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons. Appl. Phys. Lett. 2010, 97, 233109.

    Article  Google Scholar 

  18. Guisinger, N. P.; Rutter, G. M.; Crain, J. N.; First, J. N.; Stroscio, J. A. Exposure of epitaxial graphene on SiC(0001) to atomic hydrogen. Nano Lett. 2009, 9, 1462–1466.

    Article  Google Scholar 

  19. Lee, B.; Han, S.; Kim, Y. S. First-principles study of preferential sites of hydrogen incorporated in epitaxial graphene on 6H-SiC(0001). Phys. Rev. B 2010, 81, 075432.

    Article  Google Scholar 

  20. Sclauzero, G.; Pasquarello, A. First-principles study of H adsorption on graphene/SiC(0001). Phys. Status Solidi B 2013, 250, 2523–2528.

    Article  Google Scholar 

  21. Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

    Article  Google Scholar 

  22. Savini, G.; Ferrari, A. C.; Giustino, F. First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor. Phys. Rev. Lett. 2010, 105, 037002.

    Article  Google Scholar 

  23. Lebègue, S.; Klintenberg, M.; Eriksson, O.; Katsnelson, M. I. Accurate electronic band gap of pure and functionalized graphane from GW calculations. Phys. Rev. B 2009, 79, 245117.

    Article  Google Scholar 

  24. Lin, Y. P.; Ksari, Y.; Prakash, J.; Giovanelli, L.; Valmalette, J. C.; Themlin, J. M. Nitrogen-doping processes of graphene by a versatile plasma-based method. Carbon 2014, 73, 216–224.

    Article  Google Scholar 

  25. Langlais, V.; Belkhir, H.; Themlin, J. M.; Debever, J. M.; Yu, L. M.; Thiry, P. A. Initial- and final-state effects in the conduction bands of 2H-MoS2(0001) studied by k -resolved inverse photoemission spectroscopy. Phys. Rev. B 1995, 52, 12095–12101.

    Article  Google Scholar 

  26. Komolov, S. A.; Chadderton, L. T. Total current spectroscopy. Surf. Sci. 1979, 90, 359–380.

    Article  Google Scholar 

  27. Haas, T. W.; Grant, J. T.; Dooley, G. J. III. Chemical effects in Auger electron spectroscopy. J. Appl. Phys. 1972, 43, 1853–1860.

    Article  Google Scholar 

  28. Van Bommel, A. J.; Crombeen, J. E.; Van Tooren, A. LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 1975, 48, 463–472.

    Article  Google Scholar 

  29. Mattausch, A.; Pankratov, O. Ab initio study of graphene on SiC. Phys. Rev. Lett. 2007, 99, 076802.

    Article  Google Scholar 

  30. Emtsev, K. V.; Speck, F.; Seyller, T.; Ley, L.; Riley, J. D. Interaction, growth, and ordering of epitaxial graphene on SiC(0001) surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303.

    Article  Google Scholar 

  31. Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B. N.; Naud, C.; Mallet, P.; Veuillen, J. Y.; Berger, C.; Conrad, E. H.; Magaud, L. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805.

    Article  Google Scholar 

  32. Deretzis, I.; La Magna, A. Interaction between hydrogen flux and carbon monolayer on SiC(0001): Graphene formation kinetics. Nanoscale 2013, 5, 671.

    Article  Google Scholar 

  33. Lee, B.; Han, S.; Kim, Y. S. First-principles study of preferential sites of hydrogen incorporated in epitaxial graphene on 6H-SiC(0001). Phys. Rev. B 2010, 81, 075432.

    Article  Google Scholar 

  34. Sclauzero, G.; Pasquarello, A. Intercalation of H at the graphene/SiC(0001) interface: Structure and stability from first principles. Appl. Surf. Sci. 2014, 291, 64–68.

    Article  Google Scholar 

  35. Kim, S.; Ihm, J.; Choi, H. J.; Son, Y. W. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 2008, 100, 176802.

    Article  Google Scholar 

  36. Lauffer, P.; Emtsev, K. V.; Graupner, R.; Seyller, T.; Ley, L.; Reshanov, S. A.; Weber, H. B. Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2008, 77, 155426.

    Article  Google Scholar 

  37. Hass, J.; Millán-Otoya, J. E.; First, P. N.; Conrad, E. H. Interface structure of epitaxial graphene grown on 4H-SiC(0001). Phys. Rev. B 2008, 78, 205424.

    Article  Google Scholar 

  38. Veuillen, J. Y.; Hiebel, F.; Magaud, L.; Mallet, P.; Varchon, F. Interface structure of graphene on SiC: An ab initio and STM approach. J. Phys. D: Appl. Phys. 2010, 43, 374008.

    Article  Google Scholar 

  39. Sclauzero, G.; Pasquarello, A. Stability and charge transfer at the interface between SiC(0001) and epitaxial graphene. Microelectron. Eng. 2011, 88, 1478–1481.

    Article  Google Scholar 

  40. de Lima, L. H.; de Siervo, A.; Landers, R.; Viana, G. A.; Goncalves, A. M. B.; Lacerda, R. G.; Häberle, P. Atomic surface structure of graphene and its buffer layer on SiC(0001): A chemical-specific photoelectron diffraction approach. Phys. Rev. B 2013, 87, 081403.

    Article  Google Scholar 

  41. Emery, J. D.; Detlefs, B.; Karmel, H. J.; Nyakiti, L. O.; Gaskill, D. K.; Hersam, M. C.; Zegenhagen, J.; Bedzyk, M. J. Chemically resolved interface structure of epitaxial graphene on SiC(0001). Phys. Rev. Lett. 2013, 111, 215501.

    Article  Google Scholar 

  42. Two C1s components related to BLG, S1 and S2 located at ∼285 and ∼285.7 eV, are found in both studies. In Ref. [30], S1 is assigned to C atoms in sp3 configuration, and its peak area is much smaller than S2. In Ref. [41], it is the component S2 that is assigned to C atoms in sp3. The peak areas of S1 and S2 are also reversed (smaller S2).

  43. Norimatsu, W.; Kusunoki, M. Transitional structures of the interface between graphene and 6H-SiC(0001). Chem. Phys. Lett. 2009, 468, 52–56.

    Article  Google Scholar 

  44. Themlin, J. M.; Forbeaux, I.; Langlais, V.; Belkhir, H.; Debever, J. M. Unoccupied surface state on the (√3 × √3)R30° of 6H-SiC(0001). Europhys. Lett. 1997, 39, 61.

    Article  Google Scholar 

  45. Johansson, L. S. O.; Duda, L.; Laurenzis, M.; Krieftewirth, M.; Reihl, B. Electronic structure of the 6H-SiC(0001)-3 × 3 surface studied with angle resolved inverse and direct photoemission. Surf. Sci. 2000, 445, 109–114.

    Article  Google Scholar 

  46. Ostendorf, R.; Wulff, K.; Benesch, C.; Merz, H.; Zacharias, H. Unoccupied Mott-Hubbard state on the (√3 × √3)R30° reconstructed 4H-SiC(0001) surface. Phys. Rev. B 2004, 70, 205325.

    Article  Google Scholar 

  47. Benesch, C.; Fartmann, M.; Merz, H. k-resolved inverse photoemission of four different 6H-SiC(0001) surfaces. Phys. Rev. B 2001, 64, 205314.

    Article  Google Scholar 

  48. Bocquet, F. C.; Ksari, Y.; Giovanelli, L.; Porte, L.; Themlin, J. M. High temperature desorption of C60 covalently bound to 6H-SiC(0001)-(3 × 3). Phys. Rev. B 2011, 84, 075333.

    Article  Google Scholar 

  49. Charrier, A.; Pérez, R.; Thibaudau, F.; Debever, J. M.; Ortega, J.; Flores, F.; Themlin, J. M. Contrasted electronic properties of Sn-adatom based (√3 × √3)R30° reconstructions on Si(111). Phys. Rev. B 2001, 64, 115407.

    Article  Google Scholar 

  50. Furthmüller, J.; Bechstedt, F.; Hüsken, B.; Schröter, B.; Richter, W. Si-rich SiC(111)/(0001) (3 × 3) and (√3 × √3) surfaces: A Mott-Hubbard picture. Phys. Rev. B 1998, 58, 13712–13716.

    Article  Google Scholar 

  51. Yang, M.; Nurbawono, A.; Zhang, C.; Wu, R. Q.; Feng, Y. P.; Ariando. Manipulating absorption and diffusion of H atom on graphene by mechanical strain. AIP Adv. 2011, 1, 032109.

    Article  Google Scholar 

  52. Ristein, J.; Mammadov, S.; Seyller, T. Origin of doping in quasi-free-standing graphene on silicon carbide. Phys. Rev. Lett. 2012, 108, 246104.

    Article  Google Scholar 

  53. The positions of the occupied states are estimated based on the experimental values obtained on BLG reported in Refs. [18] and [30].

  54. Choi, Y. S.; Wu, X.; Lee, D. W. Selective nano-patterning of graphene using a heated atomic force microscope tip. Rev. Sci. Instrum. 2014, 85, 045002.

    Article  Google Scholar 

  55. Bocquet, F. C.; Ksari, Y.; Lin, Y. P.; Porte, L.; Themlin, J. M. Interaction of C60 with clean and hydrogenated SiC-(3 × 3) probed through the unoccupied electronic states. Phys. Rev. B 2013, 88, 125421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Pu Lin or Jean-Marc Themlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YP., Ksari, Y. & Themlin, JM. Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): A possible route for the engineering of graphene-based devices. Nano Res. 8, 839–850 (2015). https://doi.org/10.1007/s12274-014-0566-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0566-0

Keywords

Navigation