Enhanced electrical and optical properties of single-layered MoS2 by incorporation of aluminum

Abstract

Electrical and optical enhancements of single-layer semiconducting materials such as transition metal dichalcogenides have recently been studied to achieve sensitive properties via external treatments, such as the formation of organic/inorganic protecting layers on field-effect transistors (FETs), thermal annealing, and nano-dot doping of sensors and detectors. Here, we propose a new analytical approach to electrical and optical enhancement through a passivation process using atomic layer deposition (ALD), and demonstrate a synthesized MoS2 monolayer incorporated with Al atoms in an Al2O3 passivation layer. The incorporated Al atoms in the MoS2 monolayer are clearly observed by spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) and TEM-energy-dispersive X-ray spectroscopy results. We demonstrate that the chemically incorporated FETs exhibit highly enhanced mobilities of approximately 3.7 cm2·V−1·s−1, forty times greater than that of as-synthesized MoS2, with a three-fold improvement in the photoluminescence properties.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Zhang, W. J.; Huang, J.-K.; Chen, C.-H.; Chang, Y.-H.; Chen, Y.-J.; Li, L.-J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461.

    Article  Google Scholar 

  2. [2]

    Chen, C. Y.; Qiao, H.; Lin, S. H.; Luk, C. M.; Liu, Y.; Xu, Z. Q.; Song, J. C.; Xue, Y. Z.; Li, D. L.; Yuan, J. et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 2015, 5, 11830.

    Article  Google Scholar 

  3. [3]

    Tsuboi, Y.; Wang, F. J.; Kozawa, D.; Funahashi, K.; Mouri, S.; Miyauchi, Y.; Takenobu, T.; Matsuda, K. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 2015, 7, 14476–14482.

    Article  Google Scholar 

  4. [4]

    Tsai, M.-L.; Su, S.-H.; Chang, J.-K.; Tsai, D.-S.; Chen, C.-H.; Wu, C.-I.; Li, L.-J.; Chen, L.-J.; He, J.-H. Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317–8322.

    Article  Google Scholar 

  5. [5]

    Zhang, Y. W.; Li, H.; Wang, L.; Wang, H. M.; Xie, X. M.; Zhang, S.-L.; Liu, R.; Qiu, Z.-J. Photothermoelectric and photovoltaic effects both present in MoS2. Sci. Rep. 2015, 5, 7938.

    Article  Google Scholar 

  6. [6]

    Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246–3252.

    Article  Google Scholar 

  7. [7]

    Zhang, E. Z.; Wang, W. Y.; Zhang, C.; Jin, Y. B.; Zhu, G. D.; Sun, Q. Q.; Zhang, D. W.; Zhou, P.; Xiu, F. X. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 2015, 9, 612–619.

    Article  Google Scholar 

  8. [8]

    Roy, K.; Padmanabhan M.; Goswami S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

    Article  Google Scholar 

  9. [9]

    Lembke, D.; Kis, A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 2012, 6, 10070–10075.

    Article  Google Scholar 

  10. [10]

    Wu, W.; De, D.; Chang, S.-C.; Wang, Y.; Peng, H. B.; Bao, J. M.; Pei, S.-S. High mobility and high on/off ratio fieldeffect transistors based on chemical vapor deposited singlecrystal MoS2 grains. Appl. Phys. Lett. 2013, 102, 142106.

    Article  Google Scholar 

  11. [11]

    Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

    Article  Google Scholar 

  12. [12]

    Liu, H.; Si, M. W.; Deng, Y. X.; Neal, A. T.; Du, Y. C.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D. Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers. ACS Nano 2014, 8, 1031–1038.

    Article  Google Scholar 

  13. [13]

    He, G.; Ghosh, K.; Singisetti, U.; Ramamoorthy, H.; Somphonsane R.; Bohra, G.; Matsunaga. M.; Higuchi, A.; Aoki, N.; Najmaei, S. et al. Conduction mechanisms in CVD-grown monolayer MoS2 transistors: From variable-range hopping to velocity saturation. Nano Lett. 2015, 15, 5052–5058.

    Article  Google Scholar 

  14. [14]

    Fuhrer, M. S.; Hone, J. Measurement of mobility in dualgated MoS2 transistors. Nat. Nanotechnol. 2013, 8, 146–147.

    Article  Google Scholar 

  15. [15]

    Ghorbani-Asl, M.; Enyashin, A. N.; Kuc, A.; Seifert, G.; Heine, T. Defect-induced conductivity anisotropy in MoS2 monolayers. Phys. Rev. B 2013, 88, 245440.

    Article  Google Scholar 

  16. [16]

    Santosh, K. C.; Longo, R. C.; Addou, R.; Wallace, R. M.; Cho, K. Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology 2014, 25, 375703.

    Article  Google Scholar 

  17. [17]

    Islam, M. R.; Kang, N.; Bhanu, U.; Paudel, H. P.; Erementchouk, M.; Tetard, L.; Leuenberger, M. N.; Khondaker, S. I. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 2014, 6, 10033–10039.

    Article  Google Scholar 

  18. [18]

    Zhou, C. J.; Wang, X. S.; Raju, S.; Lin, Z. Y.; Villaroman, D.; Huang, B. L.; Chan, H. L.-W.; Chan, M. S.; Chai, Y. Low voltage and high on/off ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT. Nanoscale 2015, 7, 8695–8700.

    Article  Google Scholar 

  19. [19]

    Cheng, L. X.; Qin, X. Y.; Lucero, A. T.; Azcatl, A.; Huang, J.; Wallace, R. M.; Cho, K.; Kim, J. Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces 2014, 6, 11834–11838.

    Article  Google Scholar 

  20. [20]

    Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586–6591.

    Article  Google Scholar 

  21. [21]

    Al-Dulaimi, N.; Lewis, D. J.; Zhong, X. L.; Malik, M. A.; O’Brien, P. Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. J. Mater. Chem. C 2016, 4, 2312–2318.

    Article  Google Scholar 

  22. [22]

    Amani, M.; Chin, M. L.; Birdwell, A. G.; O’Regan, T. P.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 2013, 102, 193107.

    Article  Google Scholar 

  23. [23]

    Wang, J.; Chen, L. F.; Lu, W. J.; Zeng, M. Q.; Tan, L. F.; Ren, F.; Jiang, C. Z.; Fu, L. Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition. RSC Adv. 2015, 5, 4364–4367.

    Article  Google Scholar 

  24. [24]

    Ye, M. X.; Winslow, D.; Zhang, D. Y.; Pandey, R.; Yap, Y. K. Recent advancement on the optical properties of twodimensional molybdenum disulfide (MoS2) thin films. Photonics 2015, 2, 288–307.

    Article  Google Scholar 

  25. [25]

    O’Brien, M.; McEvoy, N.; Hanlon, D.; Hallam, T.; Coleman, J. N.; Duesberg, G. S. Mapping of low-frequency Raman modes in CVD-grown transition metal dichalcogenides: Layer number, stacking orientation and resonant effects. Sci. Rep. 2016, 6, 19476.

    Article  Google Scholar 

  26. [26]

    Yang, L.; Cui, X. D.; Zhang, J. Y.; Wang, K.; Shen, M.; Zeng, S. S.; Dayeh, S. A.; Feng, L.; Xiang, B. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 2014, 4, 5649.

    Article  Google Scholar 

  27. [27]

    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenidenanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  28. [28]

    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  29. [29]

    Jang, C.; Adam, S.; Chen, J.-H.; Williams, E. D.; Das Sarma, S.; Fuhrer, M. S. Tuning the effective fine structure constant in graphene: Opposing effects of dielectric screening on short- and long-range potential scattering. Phys. Rev. Lett. 2008, 101, 146805.

    Article  Google Scholar 

  30. [30]

    Tanaka, J.; Ueoka, Y.; Yoshitsugu, K.; Fujii, M.; Ishikawa, Y.; Uraoka, Y.; Takechi, K.; Tanabe, H. Comparison between effects of PECVD-SiOx and thermal ALD-AlOx passivation layers on characteristics of amorphous InGaZnO TFTs. ECS J. Solid State Sci. Technol. 2015, 4, Q61–Q65.

    Article  Google Scholar 

  31. [31]

    Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. N.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

    Article  Google Scholar 

  32. [32]

    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    Article  Google Scholar 

  33. [33]

    Kim, Y.; Jhon, Y. I.; Park, J.; Kim, C.; Lee, S.; Jhon, Y. M. Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2. Sci. Rep. 2016, 6, 21405.

    Article  Google Scholar 

  34. [34]

    Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ICT Consilience Creative program (IITP-2017-2017-0-01015) supervised by the IITP (Institute for information & communications Technology Promotion).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jang-Yeon Kwon.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Yang, S., Kim, H. et al. Enhanced electrical and optical properties of single-layered MoS2 by incorporation of aluminum. Nano Res. 11, 731–740 (2018). https://doi.org/10.1007/s12274-017-1682-4

Download citation

Keywords

  • MoS2
  • aluminum
  • incorporation
  • chemical vapor deposition
  • atomic layer deposition