Skip to main content
Log in

High-yield synthesis and liquid-exfoliation of two-dimensional belt-like hafnium disulphide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Producing environmentally stable monolayers and few-layers of hafnium disulphide (HfS2) with a high yield to reveal its unlocked electronic and optoelectronic applications is still a challenge. HfS2 is a layered two-dimensional material of group-IV transition metal dichalcogenides. For the first time, we demonstrate a simple and cost-effective method to grow layered belt-like nanocrystals of HfS2 with a notably large interlayer spacing followed by their chemical exfoliation. Various microscopic and spectroscopic techniques confirm that these as-grown crystals exfoliate into single or multiple layers in a few minutes using solvent assisted ultrasonification method in N-cyclohexyl-2-pyrrolidone. The exfoliated nanosheets of HfS2 exhibit an indirect bandgap of 1.3 eV with high stability against surface degradation. Furthermore, we demonstrate that these nanosheets hold potential for electronic applications by fabricating a field-effect transistor based on few-layered HfS2, exhibiting a field-effect mobility of 0.95 cm2/(V·s) with a high on/off current modulation ratio of 10,000 in ambient conditions. The method is scalable and has a potential significance for both academic and industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  Google Scholar 

  2. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Article  Google Scholar 

  3. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  Google Scholar 

  4. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  Google Scholar 

  5. Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670.

    Article  Google Scholar 

  6. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  7. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  Google Scholar 

  8. Liu, Y. X.; Dong, X. C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307.

    Article  Google Scholar 

  9. Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 7352.

    Article  Google Scholar 

  10. Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003.

    Article  Google Scholar 

  11. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  12. Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zettl, A. The twodimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 29, 133107.

    Article  Google Scholar 

  13. Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64.

    Article  Google Scholar 

  14. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  15. Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

    Article  Google Scholar 

  16. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102–1120.

    Article  Google Scholar 

  17. Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Twodimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

    Article  Google Scholar 

  18. Xu, K.; Wang, Z. X.; Wang, F.; Huang, Y.; Wang, F. M.; Yin, L.; Jiang, C.; He, J. Ultrasensitive phototransistors based on few-layered HfS2. Adv. Mater. 2015, 27, 7881–7887.

    Article  Google Scholar 

  19. Kanazawa, T.; Amemiya, T.; Ishikawa, A.; Upadhyaya, V.; Tsuruta, K.; Tanaka, T.; Miyamoto, Y. Few-layer HfS2 transistors. Sci. Rep. 2016, 6, 22277.

    Article  Google Scholar 

  20. Xu, K.; Huang, Y.; Chen, B.; Xia, Y.; Lei, W.; Wang, Z. X.; Wang, Q. S.; Wang, F.; Yin, L.; He, J. Toward highperformance top-gate ultrathin HfS2 field-effect transistors by interface engineering. Small 2016, 12, 3106–3111.

    Article  Google Scholar 

  21. Zheng, B. J.; Chen, Y. F.; Wang, Z. G.; Qi, F.; Huang, Z. S.; Hao, X.; Li, P. J.; Zhang, W. L.; Li, Y. R. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater. 2016, 3, 035024.

    Article  Google Scholar 

  22. Chae, S. H.; Jin, Y.; Kim, T. S.; Chung, D. S.; Na, H.; Nam, H.; Kim, H.; Perello, D. J.; Jeong, H. Y.; Ly, T. H. et al. Oxidation effect in octahedral hafnium disulfide thin film. ACS Nano 2016, 10, 1309–1316.

    Article  Google Scholar 

  23. Su, Y. R.; Lu, B.; Xie, Y. Z.; Ma, Z. W.; Liu, L. X.; Zhao, H. T.; Zhang, J.; Duan, H. G.; Zhang, H. L.; Li, J. et al. Temperature effect on electrospinning of nanobelts: The case of hafnium oxide. Nanotechnology 2011, 22, 285609.

    Article  Google Scholar 

  24. Gao, Q. X.; Wang, X. F.; Wu, X. C.; Tao, Y. R.; Zhu, J. J. Mesoporous zirconia nanobelts: Preparation, characterization and applications in catalytical methane combustion. Micropor. Mesopor. Mater. 2011, 143, 333–340.

    Article  Google Scholar 

  25. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.

    Article  Google Scholar 

  26. Osada, M.; Sasaki, T. Exfoliated oxide nanosheets: New solution to nanoelectronics. J. Mater. Chem. 2009, 19, 2503–2511.

    Article  Google Scholar 

  27. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

    Article  Google Scholar 

  28. Dines, M. B. Lithium intercalation via n-butyllithium of the layered transition metal dichalcogenides. Mater. Res. Bull. 1975, 10, 287–291.

    Article  Google Scholar 

  29. Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O’Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 2014, 50, 13338–13341.

    Article  Google Scholar 

  30. Kaur, H.; Yadav, S.; Srivastava, A. K.; Singh, N.; Schneider, J. J.; Sinha, O. P.; Agrawal, V. V.; Srivastava, R. Large area fabrication of semiconducting phosphorene by Langmuir–Blodgett assembly. Sci. Rep. 2016, 6, 34095.

    Article  Google Scholar 

  31. Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

    Article  Google Scholar 

  32. Kaur, H.; Agrawal, V. V.; Srivastava, R. Unique morphologies of molybdenum disulphide: Sheets, diffusion limited cluster aggregates and fractals, by Langmuir–Blodgett assembly for advanced electronics. arXiv preprint, arXiv:1701.02476, 2017.

    Google Scholar 

  33. Li, J. T.; Naiini, M. M.; Vaziri, S.; Lemme, M. C.; Östling, M. Inkjet printing of MoS2. Adv. Funct. Mater. 2014, 24, 6524–6531.

    Article  Google Scholar 

  34. Wang, T. Y.; Zhu, R. Z.; Zhuo, J. Q.; Zhu, Z. W.; Shao, Y. H.; Li, M. X. Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors. Anal. Chem. 2014, 86, 12064–12069.

    Article  Google Scholar 

  35. Reynolds, K. J.; Barker, J. A.; Greenham, N. C.; Friend, R. H.; Frey, G. L. Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes. J. Appl. Phys. 2002, 92, 7556–7563.

    Article  Google Scholar 

  36. Gu, X.; Cui, W.; Li, H.; Wu, Z. W.; Zeng, Z. Y.; Lee, S. T.; Zhang, H.; Sun, B. Q. A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells. Adv. Energy Mater. 2013, 3, 1262–1268.

    Article  Google Scholar 

  37. Greenaway, D. L.; Nitsche, R. Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. J. Phys. Chem. Solids 1965, 26, 1445–1458.

    Article  Google Scholar 

  38. Roubi, L.; Carlone, C. Resonance Raman spectrum of HfS2 and ZrS2. Phys. Rev. B 1988, 37, 6808–6812.

    Article  Google Scholar 

  39. Venugopal, R.; Lin, P. I.; Liu, C. C.; Chen, Y. T. Surfaceenhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets. J. Amer. Chem. Soc. 2005, 127, 11262–11268.

    Article  Google Scholar 

  40. Osada, K.; Bae, S.; Tanaka, M.; Raebiger, H.; Shudo, K.; Suzuki, T. Phonon properties of few-layer crystals of quasione-dimensional ZrS2 and ZrSe2. J. Phys. Chem. C 2016, 120, 4653–4659.

    Article  Google Scholar 

  41. Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

    Article  Google Scholar 

Download references

Acknowledgements

Work of S. Y. and J. J. S. was supported by the LOEWE project STT by the state of Hesse at Technische Universitat Darmstadt. Exfoliation, its characterization and fabrication of devices were sponsored by UGCSRF, UGC-DAE CSR-IC/CRS-77 Indore, DST and CSIR-TAPSUN NWP-55 project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harneet Kaur or Ritu Srivastava.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Yadav, S., Srivastava, A.K. et al. High-yield synthesis and liquid-exfoliation of two-dimensional belt-like hafnium disulphide. Nano Res. 11, 343–353 (2018). https://doi.org/10.1007/s12274-017-1636-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1636-x

Keywords

Navigation