Skip to main content
Log in

Mild metal-organic-gel route for synthesis of stable sub-5-nm metal-organic framework nanocrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoscale metal-organic frameworks (NMOFs) have attracted increased attention in recent years for miniaturized and/or biological applications. However, the synthesis of ultrasmall NMOFs with good stability is a great challenge. In this study, sub-5-nm nano-HKUST-1 was prepared for the first time via a mild metal-organic gel route without surfactants or capping agents. Controlling the gelation process via anion–ligand self-assembly is the key to the formation of NMOFs. The Tyndall effect, zeta potential, and liquid adsorption indicated strong stability of the obtained nano-HKUST-1, even in water. Adsorption experiments were performed using different dyes (crystal violet and methylene blue) to demonstrate the size-dependent adsorption thermodynamics and kinetics of this famous MOF. The results of this study provide new insights regarding the synthesis of NMOFs and their efficient applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sung Cho, H.; Deng, H. X.; Miyasaka, K.; Dong, Z. Y.; Cho, M.; Neimark, A. V.; Ku Kang, J.; Yaghi, O. M.; Terasaki, O. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks. Nature 2015, 527, 503–507.

    Article  Google Scholar 

  2. Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.

    Article  Google Scholar 

  3. Silva, P.; Vilela, S. M. F.; Tomé, J. P. C.; Almeida Paz, F. A. Multifunctional metal-organic frameworks: From academia to industrial applications. Chem. Soc. Rev. 2015, 44, 6774–6803.

    Article  Google Scholar 

  4. Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal azolate frameworks: From crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001–1033.

    Article  Google Scholar 

  5. He, C. T.; Jiang, L.; Ye, Z. M.; Krishna, R.; Zhong, Z. S.; Liao, P. Q.; Xu, J. Q.; Ouyang, G. F.; Zhang, J. P.; Chen, X. M. Exceptional hydrophobicity of a large-pore metal-organic zeolite. J. Am. Chem. Soc. 2015, 137, 7217–7223.

    Article  Google Scholar 

  6. Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 2014, 7, 1364–1369.

    Article  Google Scholar 

  7. Cadiau, A.; Adil, K.; Bhatt, P. M.; Belmabkhout, Y.; Eddaoudi, M. A metal-organic framework-based splitter for separating propylene from propane. Science 2016, 353, 137–140.

    Article  Google Scholar 

  8. Mahato, P.; Monguzzi, A.; Yanai, N.; Yamada, T.; Kimizuka, N. Fast and long-range triplet exciton diffusion in metalorganic frameworks for photon upconversion at ultralow excitation power. Nat. Mater. 2015, 14, 924–930.

    Article  Google Scholar 

  9. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.

    Article  Google Scholar 

  10. Zhang, X. J.; Ballem, M. A.; Hu, Z. J.; Bergman, P.; Uvdal, K. Nanoscale light-harvesting metal-organic frameworks. Angew. Chem., Int. Ed. 2011, 50, 5729–5733.

    Article  Google Scholar 

  11. Zacher, D.; Schmid, R.; Wöll, C.; Fischer, R. A. Surface chemistry of metal–organic frameworks at the liquid–solid interface. Angew. Chem., Int. Ed. 2011, 50, 176–199.

    Article  Google Scholar 

  12. Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem., Int. Ed. 2009, 48, 4739–4743.

    Article  Google Scholar 

  13. Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal–organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.

    Article  Google Scholar 

  14. Liu, C. C.; Zhang, B. X.; Zhang, J. L.; Peng, L.; Kang, X. C.; Han, B. X.; Wu, T. B.; Sang, X. X.; Ma, X. Gas promotes the crystallization of nano-sized metal-organic frameworks in ionic liquid. Chem. Commun. 2015, 51, 11445–11448.

    Article  Google Scholar 

  15. Zhao, Y. J.; Zhang, J. L.; Han, B. X.; Song, J. L.; Li, J. S.; Wang, Q. Metal–organic framework nanospheres with wellordered mesopores synthesized in an ionic liquid/CO2/surfactant system. Angew. Chem., Int. Ed. 2011, 50, 636–639.

    Article  Google Scholar 

  16. Li, L.; Xiang, S. L.; Cao, S. Q.; Zhang, J. Y.; Ouyang, G. F.; Chen, L. P.; Su, C. Y. A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metalorganic aerogels. Nat. Commun. 2013, 4, 1774.

    Article  Google Scholar 

  17. Liu, Y.-R.; He, L. S.; Zhang, J. Y.; Wang, X. B.; Su, C.-Y. Evolution of spherical assemblies to fibrous networked Pd(II) metallogels from a pyridine-based tripodal ligand and their catalytic property. Chem. Mater. 2009, 21, 557–563.

    Article  Google Scholar 

  18. Xue, C. F.; Tu, B.; Zhao, D. Y. Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Res. 2009, 2, 242–253.

    Article  Google Scholar 

  19. Liu, N.; Yao, Y.; Cha, J. J.; McDowell, M. T.; Han, Y.; Cui, Y. Functionalization of silicon nanowire surfaces with metal-organic frameworks. Nano Res. 2012, 5, 109–116.

    Article  Google Scholar 

  20. Lin, W. B.; Rieter, W. J.; Taylor, K. M. L. Modular synthesis of functional nanoscale coordination polymers. Angew. Chem., Int. Ed. 2009, 48, 650–658.

    Article  Google Scholar 

  21. Zhao, X.; Bu, X. H.; Wu, T.; Zheng, S. T.; Wang, L.; Feng, P. Y. Selective anion exchange with nanogated isoreticular positive metal-organic frameworks. Nat. Commun. 2013, 4, 2344.

    Google Scholar 

  22. Li, L.; Liu, X. L.; Geng, H. Y.; Hu, B.; Song, G. W.; Xu, Z. S. A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution. J. Mater. Chem. A 2013, 1, 10292–10299.

    Article  Google Scholar 

  23. Zhao, X. L.; Liu, S. L.; Tang, Z.; Niu, H. Y.; Cai, Y. Q.; Meng, W.; Wu, F. C.; Giesy, J. P. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water. Sci. Rep. 2015, 5, 11849.

    Article  Google Scholar 

  24. Wei, Y. H.; Dong, H. Y.; Wei, C.; Zhang, W.; Yan, Y. L.; Zhao, Y. S. Wavelength-tunable microlasers based on the encapsulation of organic dye in metal–organic frameworks. Adv. Mater. 2016, 28, 7424–7429.

    Article  Google Scholar 

  25. Chaudhari, A. K.; Han, I.; Tan, J. C. Multifunctional supramolecular hybrid materials constructed from hierarchical self-ordering of in situ generated metal-organic framework (MOF) Nanoparticles. Adv. Mater. 2015, 27, 4438–4446.

    Article  Google Scholar 

  26. Xin, C. L.; Zhan, H. J.; Huang, X.; Li, H. G.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H. Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO2 adsorption. RSC Adv. 2015, 5, 27901–27911.

    Article  Google Scholar 

  27. Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga, S. Local structure of framework Cu(II) in HKUST-1 metallorganic framework: Spectroscopic characterization upon activation and interaction with adsorbates. Chem. Mater. 2006, 18, 1337–1346.

    Article  Google Scholar 

  28. Jeong, N. C.; Samanta, B.; Lee, C. Y.; Farha, O. K.; Hupp, J. T. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1. J. Am. Chem. Soc. 2012, 134, 51–54.

    Article  Google Scholar 

  29. Iler, R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica; John Wiley & Sons: New York, 1979.

    Google Scholar 

  30. Wei, S. C.; Pan, M.; Li, K.; Wang, S. J.; Zhang, J. Y.; Su, C. Y. A multistimuli-responsive photochromic metal-organic gel. Adv. Mater. 2014, 26, 2072–2077.

    Article  Google Scholar 

  31. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 2012, 112, 724–781.

    Article  Google Scholar 

  32. Kim, Y. K.; Hyun, S. M.; Lee, J. H.; Kim, T. K.; Moon, D.; Moon, H. R. Crystal-size effects on carbon dioxide capture of a covalently alkylamine-tethered metal-organic framework constructed by a one-step self-assembly. Sci. Rep. 2016, 6, 19337.

    Article  Google Scholar 

  33. Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55.

    Article  Google Scholar 

  34. Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dinca, M. Chemiresistive sensor arrays from conductive 2D metalorganic frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783.

    Article  Google Scholar 

  35. Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P. et al. Tunable electrical conductivity in metalorganic framework thin-film devices. Science 2014, 343, 66–69.

    Article  Google Scholar 

  36. Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.

    Article  Google Scholar 

  37. Dhakshinamoorthy, A.; Asiri, A. M.; García, H. Metal–organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew. Chem., Int. Ed. 2016, 55, 5414–5445.

    Article  Google Scholar 

  38. Mahdavinia, G. R.; Aghaie, H.; Sheykhloie, H.; Vardini, M. T.; Etemadi, H. Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr. Polym. 2013, 98, 358–365.

    Article  Google Scholar 

  39. Zhu, Y.; Wang, Y. M.; Zhao, S. Y.; Liu, P.; Wei, C.; Wu, Y. L.; Xia, C. K.; Xie, J. M. Three N–H functionalized metal-organic frameworks with selective CO2 uptake, dye capture, and catalysis. Inorg. Chem. 2014, 53, 7692–7699.

    Article  Google Scholar 

  40. Mahdavinia, G. R.; Hasanpour, J.; Rahmani, Z.; Karami, S.; Etemadi, H. Nanocomposite hydrogel from grafting of acrylamide onto HPMC using sodium montmorillonite nanoclay and removal of crystal violet dye. Cellulose 2013, 20, 2591–2604.

    Article  Google Scholar 

  41. Sun, J. W.; Yan, P. F.; An, G. H.; Sha, J. Q.; Li, G. M.; Yang, G. Y. Immobilization of polyoxometalate in the metalorganic framework rht-MOF-1: Towards a highly effective heterogeneous catalyst and dye scavenger. Sci. Rep. 2016, 6, 25595.

    Article  Google Scholar 

  42. Yang, Q. Y.; Vaesen, S.; Ragon, F.; Wiersum, A. D.; Wu, D.; Lago, A.; Devic, T.; Martineau, C.; Taulelle, F.; Llewellyn, P. L. et al. A water stable metal–organic framework with optimal features for CO2 capture. Angew. Chem., Int. Ed. 2013, 52, 10316–10320.

    Article  Google Scholar 

  43. Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rew. Mater. 2016, 1, 15018.

    Article  Google Scholar 

  44. Zhang, J.-P.; Chen, X.-M. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. J. Am. Chem. Soc. 2008, 130, 6010–6017.

    Article  Google Scholar 

  45. Salles, F.; Bourrelly, S.; Jobic, H.; Devic, T.; Guillerm, V.; Llewellyn, P.; Serre, C.; Ferey, G.; Maurin, G. Molecular insight into the adsorption and diffusion of water in the versatile hydrophilic/hydrophobic flexible MIL-53(Cr) MOF. J. Phys. Chem. C 2011, 115, 10764–10776.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21571193), Open Funds of the state key Laboratory of Rare Earth Resource Utilization (No. RERU2013012), Science Foundation of Guangdong Province (No. 2015A030312007) and National Postdoctoral Program for Innovative Talents (No. BX201600195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Qiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., He, CT., Lin, J. et al. Mild metal-organic-gel route for synthesis of stable sub-5-nm metal-organic framework nanocrystals. Nano Res. 10, 3621–3628 (2017). https://doi.org/10.1007/s12274-017-1539-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1539-x

Keywords

Navigation