Skip to main content
Log in

Nanocomposite hydrogel from grafting of acrylamide onto HPMC using sodium montmorillonite nanoclay and removal of crystal violet dye

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Hydrogel nanocomposites were synthesized from grafting of acrylamide onto hydroxypropyl methylcellulose using methylenebisacrylamide crosslinker and sodium montmorillonite (Na-MMt) nanoclay. The effect of nanoclay content on the swelling of nanocomposites was investigated and an optimum swelling capacity was obtained at 12.7 wt% of Na-MMt. The effect of salt solutions on the swelling of nanocomposites revealed that the degree of swelling of samples depends only slightly on the salinity. The structure of nanocomposites was characterized by XRD, SEM, FTIR, and TEM techniques. The XRD and TEM results confirmed the exfoliation of Na-MMt nanoclay in nanocomposite matrix. The morphology of the nanocomposites was characterized by SEM technique and according to the results a loose surface was observed. The nanocomposite hydrogels were evaluated to remove cationic crystal violet dye from water. The investigation of the dye adsorption capacity and rate of nanocomposite hydrogels as a function of Na-MMt content revealed that the both adsorption capacity and rate is enhanced as the nanoclay content is increased in nanocomposite composition. The experimental equilibrated adsorption capacity of nanocomposites was analyzed using Freundlich and Langmuir isotherm models. The best fit to the experimental data was obtained with the Langmuir model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abou-Taleb MF, Hegazy DE, Ismail SA (2012) Radiation synthesis, characterization and dye adsorption of alginate–organophilic montmorillonite nanocomposite. Carbohydr Polym 87:2263–2269

    Article  CAS  Google Scholar 

  • Ayranci E, Duman O (2009) In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth. Sep Sci Technol 44:3735–3752

    Article  CAS  Google Scholar 

  • Carlmark A, Larsson E, Malstrom E (2012) Grafting of cellulose by ring-opening polymerisation—a review. Eur Polym J 48:1646–1689

    Article  CAS  Google Scholar 

  • Castel D, Ricard A, Audebert R (1990) Swelling of anionic and cationic starch-based superabsorbents in water and saline solution. J Appl Polym Sci 39:11–29

    Article  CAS  Google Scholar 

  • Cirini G (2005) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085

    Article  Google Scholar 

  • Dai J, Yang H, Shangguan Y, Zheng Q, Cheng R (2011) Phosphate adsorption from aqueouse solutions by disused adsorbents: chitosan hydrogel beads after removal of copper (II). Chem Eng J 166:970–977

    Article  CAS  Google Scholar 

  • Darvishi Z, Kabiri K, Zohuriaan-Mehr MJ, Morsali A (2011) Nanocomposite super-swelling hydrogels with nanorod bentonite. J Appl Polym Sci 120:3453–3459

    Article  CAS  Google Scholar 

  • Das R, Panda AB, Pal S (2012) Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose 19:933–945

    Article  CAS  Google Scholar 

  • Duman O, Ayranci E (2006) Adsorption characteristics of benzaldehyde, sulphanilic acid, and pphenolsulfonate from water, acid, or base solutions onto activated carbon cloth. Sep Sci Technol 41:3673–3692

    Article  CAS  Google Scholar 

  • El-Mohdy HL, Abd El-Rehim HA (2009) Radiation synthesis of kappa-carrageenan/acrylamide graft copolymers as superabsorbents and their possible applications. J Polym Res 16:63–72

    Article  Google Scholar 

  • Gurses A, Dogar C, Yalcin M, Akikyidiz M, Bayrak R, Karaca S (2006) The adsorption kinetics of the cationic dye, methylene blue, onto clay. J Hazard Mater B131:217–228

    Article  Google Scholar 

  • Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  Google Scholar 

  • Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical and swelling/deswelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  • Jiuhui Q (2008) Research progress of novel adsorption processes in water purification: a review. J Environ Sci 20:1–13

    Article  CAS  Google Scholar 

  • Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J 39:1341–1348

    Article  CAS  Google Scholar 

  • Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett 2:757–778

    Article  Google Scholar 

  • Kasgoz H, Durmus A (2008) Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polym Adv Tecnhol 19:838–845

    Article  CAS  Google Scholar 

  • Kost J (1999) Intelligent drug delivery systems. In: Mathiowitz E (ed) Encyclopedia of controlled drug delivery. Wiley, New York

  • Li S (2010) Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylase. Bioresour Technol 101:2197–2202

    Article  CAS  Google Scholar 

  • Li A, Zhang J, Wang A (2007) Preparation and slow-release property of a poly(acrylic acid)/attapulgite/sodium humate superabsorbent composite. J Appl Polym Sci 103:37–45

    Article  CAS  Google Scholar 

  • Li P, Zhang J, Wang A (2008) A novel N-succinylchitosan-graft-polyacrylamide/attapulgite composite hydrogel prepared through inverse suspension polymerization. Macromol Mater Eng 292:962–969

    Article  Google Scholar 

  • Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54:1981–1985

    Article  CAS  Google Scholar 

  • Liu KH, Liu TY, Chen SY (2008) Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045

    Article  CAS  Google Scholar 

  • Liu Y, Zheng Y, Aiqin Wang A (2010) Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22:486–493

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004a) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399–1407

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Zohuriaan-Mehr MJ, Pourjavadi A (2004b) Modified chitosan III, superabsorbency, salt- and pH-sensitivity of smart ampholytic hydrogels from chitosan-g-PAN. Polym Adv Technol 15:173–180

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Marandi GB, Pourjavadi A, Kiani GR (2010) Semi-IPN carrageenan-based nanocomposite hydrogels: synthesis and swelling behavior. J Appl Polym Sci 118:2989–2997

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Massoudi A, Baghban A, Massoumi B (2012a) Novel carrageenan-based hydrogel nanocomposites containing laponite RD and their application to remove cationic dye. Iran Polym J 21:609–619

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Massoumi B, Jalili K, Kiani GR (2012b) Effect of sodium montmorillonite nanoclay on the water absorbency and cationic dye removal of carrageenan-based nanocomposite superabsorbents. J Polym Res 19:9947

    Article  Google Scholar 

  • Papajova E, Bujdos M, Chorvat D, Stach M, Lacik I (2012) Method for preparation of planar alginate hydrogels by external gelling using an aerosol of gelling solution. Carbohydr Polym 90:472–482

    Article  CAS  Google Scholar 

  • Po R (1994) Water-absorbent polymers. J Macromol Sci, Rev Macromol Chem Phys C34:607–662

    Article  CAS  Google Scholar 

  • Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ, Omidian H (2003) Modified chitosan. I. optimized cerium ammonium nitrate-induced synthesis of chitosan-graft-polyacrylonitrile. J Appl Polym Sci 88:2048–2054

    Article  CAS  Google Scholar 

  • Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237

    Article  CAS  Google Scholar 

  • Wang L, Wang A (2007) Removal of Congo red from aqueous solution using a chitosan/organo-montmorillonite nanocomposite. J Chem Technol Biotechnol 82:711–720

    Article  CAS  Google Scholar 

  • Xie Y, Wang A, Liu G (2010) Superabsorbent composite XXII: effects of modified sepiolite on water absorbency and swelling behavior of chitosan-g-poly(acrylic acid)/sepiolite superabsorbent composite. Polym Compos 31:89–96

    Article  CAS  Google Scholar 

  • Yan H, Dai J, Yang Z, Yang H, Cheng R (2011) Enhanced and selective adsorption of copper (II) ions on surface carboxymethylated chitosan hydrogel beads. Chem Eng J 174:586–594

    Article  CAS  Google Scholar 

  • Zhu HY, Fu QY, Jiang R, Jiang JH, Xiao L, Zeng GM, Zhao SL, Wang Y (2011) Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem Eng J 173:494–502

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Reza Mahdavinia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdavinia, G.R., Hasanpour, J., Rahmani, Z. et al. Nanocomposite hydrogel from grafting of acrylamide onto HPMC using sodium montmorillonite nanoclay and removal of crystal violet dye. Cellulose 20, 2591–2604 (2013). https://doi.org/10.1007/s10570-013-0004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0004-6

Keywords

Navigation