Nano Research

, Volume 10, Issue 9, pp 3189–3201 | Cite as

Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells

  • Liying Liang
  • Yang Xu
  • Liaoyong Wen
  • Yueliang Li
  • Min Zhou
  • Chengliang Wang
  • Huaping Zhao
  • Ute Kaiser
  • Yong Lei
Research Article


A novel hierarchical electrode material for Na-ion batteries composed of Sb nanoplates on Ni nanorod arrays is developed to tackle the issues of the rapid capacity fading and poor rate capability of Sb-based materials. The three-dimensional (3D) Sb-Ni nanoarrays as anodes exhibit the synergistic effects of the two-dimensional nanoplates and the open and conductive array structure as well as strong structural integrity. Further, their capacitive behavior is confirmed through a kinetics analysis, which shows that their excellent Na-storage performance is attributable to their unique nanostructure. When used as binder-free sodium-ion battery (SIB) anodes, the nanoarrays exhibit a high capacity retention rate (more than 80% over 200 cycles) at a current density of 0.5 A·g–1 and excellent rate capacity (up to 20 A·g–1), with their capacity being 580 mAh·g–1. Moreover, a P2-Na2/3Ni1/3Mn2/3O2//3D Sb-Ni nanoarrays full cell delivers a highly reversible capacity of 579.8 mAh·g–1 over 200 cycles and an energy density as high as 100 Wh·kg–1. This design strategy for ensuring fast and stable Na storage may work with other electrode materials as well.


hierarchical Sb-Ni nanoarrays binder-free anode capacitive charge storage Na-ion full cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is financially supported by the European Research Council (ThreeDsurface, No. 240144), European Research Council (HiNaPc, No. 737616), BMBF (ZIK-3DNanoDevice, No. 03Z1MN11), and German Research Foundation (DFG: LE 2249_4-1).

Supplementary material

12274_2017_1536_MOESM1_ESM.pdf (2.9 mb)
Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells


  1. [1]
    Hasa, I.; Passerini, S.; Hassoun, J. A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv. 2015, 5, 48928–48934.CrossRefGoogle Scholar
  2. [2]
    Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.CrossRefGoogle Scholar
  3. [3]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  4. [4]
    Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.CrossRefGoogle Scholar
  5. [5]
    Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.CrossRefGoogle Scholar
  6. [6]
    Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.CrossRefGoogle Scholar
  7. [7]
    Jeong, G.; Kim, Y.-U.; Kim, H.; Kim, Y.-J.; Sohn, H.-J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 2011, 4, 1986–2002.CrossRefGoogle Scholar
  8. [8]
    Hu, L. Y.; Zhu, X. S.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Bao, J. C. A chemically coupled antimony/multilayer graphene hybrid as a high-performance anode for sodium-ion batteries. Chem. Mater. 2015, 27, 8138–8145.Google Scholar
  9. [9]
    Xu, Y. H.; Liu, Q.; Zhu, Y. J.; Liu, Y. H.; Langrock, A.; Zachariah, M. R.; Wang, C. S. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13, 470–474.CrossRefGoogle Scholar
  10. [10]
    Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323.CrossRefGoogle Scholar
  11. [11]
    Chevrier, V. L.; Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 2011, 158, A1011–A1014.CrossRefGoogle Scholar
  12. [12]
    Wu, L.; Lu, H. Y.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J. Mater. Chem. A 2015, 3, 5708–5713.CrossRefGoogle Scholar
  13. [13]
    Xie, X. Q.; Kretschmer, K.; Zhang, J. Q.; Sun, B.; Su, D. W.; Wang, G. X. Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries. Nano Energy 2015, 13, 208–217.CrossRefGoogle Scholar
  14. [14]
    Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.CrossRefGoogle Scholar
  15. [15]
    Lee, G.-H.; Shim, H.-W.; Kim, D.-W. Superior long-life and high-rate Ge nanoarrays anchored on Cu/C nanowire frameworks for Li-ion battery electrodes. Nano Energy 2015, 13, 218–225.CrossRefGoogle Scholar
  16. [16]
    Song, X. S.; Li, X. F.; Bai, Z. M.; Yan, B.; Li, D. J.; Sun, X. L. Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries. Nano Energy 2016, 26, 533–540.CrossRefGoogle Scholar
  17. [17]
    Ko, Y. N.; Kang, Y. C. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 2014, 50, 12322–12324.CrossRefGoogle Scholar
  18. [18]
    He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk. Nano Lett. 2014, 14, 1255–1262.CrossRefGoogle Scholar
  19. [19]
    Hou, H. S.; Jing, M. J.; Yang, Y. C.; Zhu, Y. R.; Fang, L. B.; Song, W. X.; Pan, C. C.; Yang, X. M.; Ji, X. B. Sodium/ lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. ACS Appl. Mater. Interfaces 2014, 6, 16189–16196.CrossRefGoogle Scholar
  20. [20]
    Wang, N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralonglifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.CrossRefGoogle Scholar
  21. [21]
    Liu, J.; Yang, Z. Z.; Wang, J. Q.; Gu, L.; Maier, J.; Yu, Y. Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries. Nano Energy 2015, 16, 389–398.CrossRefGoogle Scholar
  22. [22]
    Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393.CrossRefGoogle Scholar
  23. [23]
    Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1229–1236.CrossRefGoogle Scholar
  24. [24]
    Wang, J. Z.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. J. Mater. Chem. 2012, 22, 1511–1515.CrossRefGoogle Scholar
  25. [25]
    Lee, C. W.; Kim, J.-C.; Park, S.; Song, H. J.; Kim, D.-W. Highly stable sodium storage in 3-D gradational Sb–NiSb–Ni heterostructures. Nano Energy 2015, 15, 479–489.CrossRefGoogle Scholar
  26. [26]
    Xu, Y.; Zhou, M.; Wen, L. Y.; Wang, C. L.; Zhao, H. P.; Mi, Y.; Liang, L. Y.; Fu, Q.; Wu, M. H.; Lei, Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater. 2015, 27, 4274–4280.CrossRefGoogle Scholar
  27. [27]
    Ke, F.-S.; Huang, L.; Solomon, B. C.; Wei, G.-Z.; Xue, L.-J.; Zhang, B.; Li, J.-T.; Zhou, X.-D.; Sun, S.-G. Threedimensional nanoarchitecture of Sn–Sb–Co alloy as an anode of lithium-ion batteries with excellent lithium storage performance. J. Mater. Chem. 2012, 22, 17511–17517.CrossRefGoogle Scholar
  28. [28]
    Wang, J. Z.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Cu–Sn core–shell nanowire arrays as three-dimensional electrodes for lithium-ion batteries. J. Phys. Chem. C 2011, 115, 23620–23624.CrossRefGoogle Scholar
  29. [29]
    Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571–1576.CrossRefGoogle Scholar
  30. [30]
    Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754–21759.CrossRefGoogle Scholar
  31. [31]
    Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368–3397.CrossRefGoogle Scholar
  32. [32]
    Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.CrossRefGoogle Scholar
  33. [33]
    Liu, Y. H.; Xu, Y. H.; Zhu, Y. J.; Culver, J. N.; Lundgren, C. A.; Xu, K.; Wang, C. S. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 2013, 7, 3627–3634.CrossRefGoogle Scholar
  34. [34]
    Liang, L. Y.; Xu, Y.; Wang, C. L.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Zhou, M.; Zhao, H. P.; Lei, Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2954–2962.CrossRefGoogle Scholar
  35. [35]
    Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.CrossRefGoogle Scholar
  36. [36]
    Baggetto, L.; Ganesh, P.; Sun, C. N.; Meisner, R. A.; Zawodzinski, T. A.; Veith, G. M. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and theory. J. Mater. Chem. A 2013, 1, 7985–7994.CrossRefGoogle Scholar
  37. [37]
    Baggetto, L.; Hah, H.-Y.; Jumas, J. C.; Johnson, C. E.; Johnson, J. A.; Keum, J. K.; Bridges, C. A.; Veith, G. M. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies. J. Power Sources 2014, 267, 329–336.CrossRefGoogle Scholar
  38. [38]
    Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M. et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 2014, 26, 2901–2908.CrossRefGoogle Scholar
  39. [39]
    Zhou, X. L.; Zhong, Y. R.; Yang, M.; Hu, M.; Wei, J. P.; Zhou, Z. Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem. Commun. 2014, 50, 12888–12891.CrossRefGoogle Scholar
  40. [40]
    Luo, B.; Wang, B.; Li, X. L.; Jia, Y. Y.; Liang, M. H.; Zhi, L. J. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 2012, 24, 3538–3543.CrossRefGoogle Scholar
  41. [41]
    Zhu, Y. J.; Han, X. G.; Xu, Y. H.; Liu, Y. H.; Zheng, S. Y.; Xu, K.; Hu, L. B.; Wang, C. S. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 2013, 7, 6378–6386.CrossRefGoogle Scholar
  42. [42]
    He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.CrossRefGoogle Scholar
  43. [43]
    Jia, X. L.; Chen, Z.; Cui, X.; Peng, Y. T.; Wang, X. L.; Wang, G.; Wei, F.; Lu, Y. F. Building robust architectures of carbon and metal oxide nanocrystals toward highperformance anodes for lithium-ion batteries. ACS Nano 2012, 6, 9911–9919.CrossRefGoogle Scholar
  44. [44]
    Zhang, W.; Liu, Y. T.; Chen, C. J.; Li, Z.; Huang, Y. H.; Hu, X. L. Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 2015, 11, 3822–3829.CrossRefGoogle Scholar
  45. [45]
    Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.CrossRefGoogle Scholar
  46. [46]
    Ardizzone, S.; Fregonara, G.; Trasatti, S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267.CrossRefGoogle Scholar
  47. [47]
    Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous a-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.CrossRefGoogle Scholar
  48. [48]
    Chen, Z.; Augustyn, V.; Jia, X. L.; Xiao, Q. F.; Dunn, B.; Lu, Y. F. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 2012, 6, 4319–4327.CrossRefGoogle Scholar
  49. [49]
    Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticledecorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.Google Scholar
  50. [50]
    Yang, Y.; Fan, X. J.; Casillas, G.; Peng, Z. W.; Ruan, G. D.; Wang, G.; Yacaman, M. J.; Tour, J. M. Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries. ACS Nano 2014, 8, 3939–3946.CrossRefGoogle Scholar
  51. [51]
    Zhukoskii, Y. F.; Balaya, P.; Kotomin, E. A.; Maier, J. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys. Rev. Lett. 2006, 96, 058302.CrossRefGoogle Scholar
  52. [52]
    Jamnik, J.; Maier, J. Nanocrystallinity effects in lithium battery materials: Aspects of nano-ionics. Part IV.Phys. Chem. Chem. Phys. 2003, 5, 5215–5220.CrossRefGoogle Scholar
  53. [53]
    Shin, J. Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464–3472.CrossRefGoogle Scholar
  54. [54]
    Balaya, P. Size effects and nanostructured materials for energy applications. Energy Environ. Sci. 2008, 1, 645–654.CrossRefGoogle Scholar
  55. [55]
    Nam, D. H.; Hong, K. S.; Lim, S. J.; Kim, M. J.; Kwon, H. S. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries. Small 2015, 11, 2885–2892.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Liying Liang
    • 1
  • Yang Xu
    • 1
  • Liaoyong Wen
    • 1
  • Yueliang Li
    • 2
  • Min Zhou
    • 1
  • Chengliang Wang
    • 1
  • Huaping Zhao
    • 1
  • Ute Kaiser
    • 2
  • Yong Lei
    • 1
  1. 1.Institute of Physics & IMN MacroNano (ZIK)Ilmenau University of TechnologyIlmenauGermany
  2. 2.Central Facility for Electron Microscopy, Electron Microscopy Group of Materials ScienceUlm UniversityUlmGermany

Personalised recommendations