Skip to main content
Log in

Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel hierarchical electrode material for Na-ion batteries composed of Sb nanoplates on Ni nanorod arrays is developed to tackle the issues of the rapid capacity fading and poor rate capability of Sb-based materials. The three-dimensional (3D) Sb-Ni nanoarrays as anodes exhibit the synergistic effects of the two-dimensional nanoplates and the open and conductive array structure as well as strong structural integrity. Further, their capacitive behavior is confirmed through a kinetics analysis, which shows that their excellent Na-storage performance is attributable to their unique nanostructure. When used as binder-free sodium-ion battery (SIB) anodes, the nanoarrays exhibit a high capacity retention rate (more than 80% over 200 cycles) at a current density of 0.5 A·g–1 and excellent rate capacity (up to 20 A·g–1), with their capacity being 580 mAh·g–1. Moreover, a P2-Na2/3Ni1/3Mn2/3O2//3D Sb-Ni nanoarrays full cell delivers a highly reversible capacity of 579.8 mAh·g–1 over 200 cycles and an energy density as high as 100 Wh·kg–1. This design strategy for ensuring fast and stable Na storage may work with other electrode materials as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasa, I.; Passerini, S.; Hassoun, J. A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv. 2015, 5, 48928–48934.

    Article  Google Scholar 

  2. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

    Article  Google Scholar 

  3. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  4. Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

    Article  Google Scholar 

  5. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

    Article  Google Scholar 

  6. Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.

    Article  Google Scholar 

  7. Jeong, G.; Kim, Y.-U.; Kim, H.; Kim, Y.-J.; Sohn, H.-J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 2011, 4, 1986–2002.

    Article  Google Scholar 

  8. Hu, L. Y.; Zhu, X. S.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Bao, J. C. A chemically coupled antimony/multilayer graphene hybrid as a high-performance anode for sodium-ion batteries. Chem. Mater. 2015, 27, 8138–8145.

    Google Scholar 

  9. Xu, Y. H.; Liu, Q.; Zhu, Y. J.; Liu, Y. H.; Langrock, A.; Zachariah, M. R.; Wang, C. S. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13, 470–474.

    Article  Google Scholar 

  10. Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323.

    Article  Google Scholar 

  11. Chevrier, V. L.; Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 2011, 158, A1011–A1014.

    Article  Google Scholar 

  12. Wu, L.; Lu, H. Y.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J. Mater. Chem. A 2015, 3, 5708–5713.

    Article  Google Scholar 

  13. Xie, X. Q.; Kretschmer, K.; Zhang, J. Q.; Sun, B.; Su, D. W.; Wang, G. X. Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries. Nano Energy 2015, 13, 208–217.

    Article  Google Scholar 

  14. Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.

    Article  Google Scholar 

  15. Lee, G.-H.; Shim, H.-W.; Kim, D.-W. Superior long-life and high-rate Ge nanoarrays anchored on Cu/C nanowire frameworks for Li-ion battery electrodes. Nano Energy 2015, 13, 218–225.

    Article  Google Scholar 

  16. Song, X. S.; Li, X. F.; Bai, Z. M.; Yan, B.; Li, D. J.; Sun, X. L. Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries. Nano Energy 2016, 26, 533–540.

    Article  Google Scholar 

  17. Ko, Y. N.; Kang, Y. C. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 2014, 50, 12322–12324.

    Article  Google Scholar 

  18. He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk. Nano Lett. 2014, 14, 1255–1262.

    Article  Google Scholar 

  19. Hou, H. S.; Jing, M. J.; Yang, Y. C.; Zhu, Y. R.; Fang, L. B.; Song, W. X.; Pan, C. C.; Yang, X. M.; Ji, X. B. Sodium/ lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. ACS Appl. Mater. Interfaces 2014, 6, 16189–16196.

    Article  Google Scholar 

  20. Wang, N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralonglifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.

    Article  Google Scholar 

  21. Liu, J.; Yang, Z. Z.; Wang, J. Q.; Gu, L.; Maier, J.; Yu, Y. Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries. Nano Energy 2015, 16, 389–398.

    Article  Google Scholar 

  22. Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393.

    Article  Google Scholar 

  23. Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1229–1236.

    Article  Google Scholar 

  24. Wang, J. Z.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. J. Mater. Chem. 2012, 22, 1511–1515.

    Article  Google Scholar 

  25. Lee, C. W.; Kim, J.-C.; Park, S.; Song, H. J.; Kim, D.-W. Highly stable sodium storage in 3-D gradational Sb–NiSb–Ni heterostructures. Nano Energy 2015, 15, 479–489.

    Article  Google Scholar 

  26. Xu, Y.; Zhou, M.; Wen, L. Y.; Wang, C. L.; Zhao, H. P.; Mi, Y.; Liang, L. Y.; Fu, Q.; Wu, M. H.; Lei, Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater. 2015, 27, 4274–4280.

    Article  Google Scholar 

  27. Ke, F.-S.; Huang, L.; Solomon, B. C.; Wei, G.-Z.; Xue, L.-J.; Zhang, B.; Li, J.-T.; Zhou, X.-D.; Sun, S.-G. Threedimensional nanoarchitecture of Sn–Sb–Co alloy as an anode of lithium-ion batteries with excellent lithium storage performance. J. Mater. Chem. 2012, 22, 17511–17517.

    Article  Google Scholar 

  28. Wang, J. Z.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Cu–Sn core–shell nanowire arrays as three-dimensional electrodes for lithium-ion batteries. J. Phys. Chem. C 2011, 115, 23620–23624.

    Article  Google Scholar 

  29. Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571–1576.

    Article  Google Scholar 

  30. Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754–21759.

    Article  Google Scholar 

  31. Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368–3397.

    Article  Google Scholar 

  32. Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

    Article  Google Scholar 

  33. Liu, Y. H.; Xu, Y. H.; Zhu, Y. J.; Culver, J. N.; Lundgren, C. A.; Xu, K.; Wang, C. S. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 2013, 7, 3627–3634.

    Article  Google Scholar 

  34. Liang, L. Y.; Xu, Y.; Wang, C. L.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Zhou, M.; Zhao, H. P.; Lei, Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2954–2962.

    Article  Google Scholar 

  35. Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.

    Article  Google Scholar 

  36. Baggetto, L.; Ganesh, P.; Sun, C. N.; Meisner, R. A.; Zawodzinski, T. A.; Veith, G. M. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and theory. J. Mater. Chem. A 2013, 1, 7985–7994.

    Article  Google Scholar 

  37. Baggetto, L.; Hah, H.-Y.; Jumas, J. C.; Johnson, C. E.; Johnson, J. A.; Keum, J. K.; Bridges, C. A.; Veith, G. M. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies. J. Power Sources 2014, 267, 329–336.

    Article  Google Scholar 

  38. Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M. et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 2014, 26, 2901–2908.

    Article  Google Scholar 

  39. Zhou, X. L.; Zhong, Y. R.; Yang, M.; Hu, M.; Wei, J. P.; Zhou, Z. Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem. Commun. 2014, 50, 12888–12891.

    Article  Google Scholar 

  40. Luo, B.; Wang, B.; Li, X. L.; Jia, Y. Y.; Liang, M. H.; Zhi, L. J. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 2012, 24, 3538–3543.

    Article  Google Scholar 

  41. Zhu, Y. J.; Han, X. G.; Xu, Y. H.; Liu, Y. H.; Zheng, S. Y.; Xu, K.; Hu, L. B.; Wang, C. S. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 2013, 7, 6378–6386.

    Article  Google Scholar 

  42. He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.

    Article  Google Scholar 

  43. Jia, X. L.; Chen, Z.; Cui, X.; Peng, Y. T.; Wang, X. L.; Wang, G.; Wei, F.; Lu, Y. F. Building robust architectures of carbon and metal oxide nanocrystals toward highperformance anodes for lithium-ion batteries. ACS Nano 2012, 6, 9911–9919.

    Article  Google Scholar 

  44. Zhang, W.; Liu, Y. T.; Chen, C. J.; Li, Z.; Huang, Y. H.; Hu, X. L. Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 2015, 11, 3822–3829.

    Article  Google Scholar 

  45. Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.

    Article  Google Scholar 

  46. Ardizzone, S.; Fregonara, G.; Trasatti, S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267.

    Article  Google Scholar 

  47. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous a-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    Article  Google Scholar 

  48. Chen, Z.; Augustyn, V.; Jia, X. L.; Xiao, Q. F.; Dunn, B.; Lu, Y. F. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 2012, 6, 4319–4327.

    Article  Google Scholar 

  49. Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticledecorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.

    Google Scholar 

  50. Yang, Y.; Fan, X. J.; Casillas, G.; Peng, Z. W.; Ruan, G. D.; Wang, G.; Yacaman, M. J.; Tour, J. M. Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries. ACS Nano 2014, 8, 3939–3946.

    Article  Google Scholar 

  51. Zhukoskii, Y. F.; Balaya, P.; Kotomin, E. A.; Maier, J. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys. Rev. Lett. 2006, 96, 058302.

    Article  Google Scholar 

  52. Jamnik, J.; Maier, J. Nanocrystallinity effects in lithium battery materials: Aspects of nano-ionics. Part IV.Phys. Chem. Chem. Phys. 2003, 5, 5215–5220.

    Article  Google Scholar 

  53. Shin, J. Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464–3472.

    Article  Google Scholar 

  54. Balaya, P. Size effects and nanostructured materials for energy applications. Energy Environ. Sci. 2008, 1, 645–654.

    Article  Google Scholar 

  55. Nam, D. H.; Hong, K. S.; Lim, S. J.; Kim, M. J.; Kwon, H. S. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries. Small 2015, 11, 2885–2892.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the European Research Council (ThreeDsurface, No. 240144), European Research Council (HiNaPc, No. 737616), BMBF (ZIK-3DNanoDevice, No. 03Z1MN11), and German Research Foundation (DFG: LE 2249_4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Lei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Xu, Y., Wen, L. et al. Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Res. 10, 3189–3201 (2017). https://doi.org/10.1007/s12274-017-1536-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1536-0

Keywords

Navigation