Skip to main content
Log in

Pyridine-regulated Sb@InSbS3 ultrafine nanoplates as high-capacity and long-cycle anodes for sodium-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sb-based materials exhibit considerable potential for sodium-ion storage owing to their high theoretical capacities. However, the bulk properties of Sb-based materials always result in poor cycling and rate performances. To overcome these issues, pyridine-regulated Sb@InSbS3 ultrafine nanoplates loaded on reduced graphene oxides (Sb@InSbS3@rGO) were designed and synthesized. During the synthesis process, pyridine was initially adopted to coordinate with In3+, and uniformly dispersed In2S3 ultrafine nanoplates on reduced graphene oxide were generated after sulfidation. Next, partial In3+ was exchanged with Sb3+, and Sb@InSbS3@rGO was obtained by using the subsequent annealing method. The unique structure of Sb@InSbS3@rGO effectively shortened the transfer path of sodium ions and electrons and provided a high pseudocapacitance. As the anode in sodium-ion batteries, the Sb@InSbS3@rGO electrode demonstrated a significantly higher reversible capacity, better stability (445 mAh·g−1 at 0.1 A·g−1 after 200 cycles and 212 mAh·g−1 at 2 A·g−1 after 1200 cycles), and superior rate (210 mAh·g−1 at 6.4 A·g−1) than the electrode without pyridine (355 mAh·g−1 at 0.1 A·g−1 after 55 cycles and 109 mAh·g−1 at 2 A·g−1 after 770 cycles). Furthermore, full cells were assembled by using the Sb@InSbS3@rGO as anode and Na3V2(PO4)3 as cathode, which demonstrated good cycling and rate performances and exhibited promising application prospects. These results indicate that adjusting the microstructure of electrode materials through coordination balance is A·good strategy for obtaining high-capacity, high-rate, and long-cycle sodium storage performances.

Graphical abstract

摘要

锑基材料具有较高的理论储钠容量, 在钠离子电池储能系统中存在较大的潜力。然而, 锑基材料的块状体积特性导致电池具有较差的循环稳定性和倍率性能。为了有效解决该问题, 本文在还原的氧化石墨烯表面负载了吡啶调控的Sb@InSbS3超小纳米片(Sb@InSbS3@rGO)。在制备过程中, 吡啶首先与In3+配位, 经过硫化后, 在rGO表面上生成均匀分散的In2S3超小纳米片, 然后将Sb3+交换In2S3中的部分In3+, 最后经过退火处理制备了Sb@InSbS3@rGO。Sb@InSbS3@rGO的超小纳米片结构可以有效缩短钠离子和电子的转移路径, 并提升赝电容贡献率。Sb@InSbS3@rGO作为钠离子电池负极材料, 具有较高的可逆容量, 良好的稳定性(在0.1 A·g−1下循环200次后, 可逆容量仍保持为445 mAh·g−1, 在2 A·g−1下循环1200次后, 可逆容量保持为212 mAh·g−1)和较好的倍率性能(在6.4 A·g−1下可逆容量为210 mAh·g−1), 远超未使用吡啶的电极(在0.1 A·g−1下循环55次后, 可逆容量仅为355 mAh·g−1;在2 A·g−1下循环770次后, 可逆容量仅为109 mAh·g−1)。此外, 由Sb@InSbS3@rGO负极和Na3V2(PO4)3正极组装的全电池也展现出良好的循环稳定性和倍率性能, 充分体现了Sb@InSbS3@rGO较好的应用前景。以上结果表明, 借助配位平衡调控电极材料的微观结构是获得高容量、高倍率和长周期钠离子电池的良好策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu Z, Wang J. Toward emerging sodium-based energy storage technologies: from performance to sustainability. Adv Energy Mater. 2022;12:2201692. https://doi.org/10.1002/aenm.202201692.

    Article  CAS  Google Scholar 

  2. Komaba S. Sodium-driven rechargeable batteries: an effort towards future energy storage. Chem Lett. 2020;49:1507. https://doi.org/10.1246/cl.200568.

    Article  CAS  Google Scholar 

  3. Wang N, Fei J, Zheng XH, Zhao B, Yang T. Self-supported carbon cloth-based materials as flexible lithium/sodium-ion battery anodes: a review. Mater Rep. 2023;37:16. https://doi.org/10.11896/cldb.20090256.

    Article  Google Scholar 

  4. Ye J, Song WM, Sun L, Yang ZQ, Jiang ZC. Preparation of flower-like SnSe0.5S0.5@N-C composite material for sodium ion battery. Fine Chem. 2022;39:382. https://doi.org/10.13550/j.jxhg.20210786.

    Article  Google Scholar 

  5. Lin Q, Zhang SC, Yu LJ, Hou BX, Zhang SH, Wang Z, Song JJ, Zhao XX. Recycle waste washcloth to design Fe3O4/FeS2/C heterojunction membrane as high-area capacity freestanding anode for sodium-ion batteries. Chem Eng J. 2023;455:140945. https://doi.org/10.1016/j.cej.2022.140945.

    Article  CAS  Google Scholar 

  6. Zhan WW, Zhu M, Lan JL, Wang HJ, Yuan HC, Yang XP, Sui G. 1D Sb2S3@nitrogen-doped carbon coaxial nanotubes uniformly encapsulated within 3D porous graphene aerogel for fast and stable sodium storage. Chem Eng J. 2021;408:128007. https://doi.org/10.1016/j.cej.2020.128007.

    Article  CAS  Google Scholar 

  7. Wang NN, Bai ZC, Qian YT, Yang J. One-dimensional yolk-shell Sb@Ti–O–P nanostructures as a high-capacity and high-rate anode material for sodium ion batteries. ACS Appl Mater Interfaces. 2017;9:447. https://doi.org/10.1021/acsami.6b13193.

    Article  CAS  PubMed  Google Scholar 

  8. Clites M, Hart JL, Taheri ML, Pomerantseva E. Annealing-assisted enhancement of electrochemical stability of Na-preintercalated bilayered vanadium oxide electrodes in Na-ion batteries. ACS Appl Energy Mater. 2020;3:1063. https://doi.org/10.1021/acsaem.9b02098.

    Article  CAS  Google Scholar 

  9. Wei CH, Guo SG, Ma W, Mei SX, Xiang B, Gao B. Recent progress of bismuth-based electrode materials for advanced sodium ion batteries anode. Chin J Rare Met. 2021;45(5):611. https://doi.org/10.13373/j.cnki.cjrm.XY20070021.

    Article  Google Scholar 

  10. Pei YR, Zhou HY, Zhao M, Li JC, Ge X, Zhang W, Yang CC, Jiang Q. High-efficiency sodium storage of Co0.85Se/WSe2 encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering. Carbon Energy. 2023;5:e374. https://doi.org/10.1002/cey2.374.

    Article  CAS  Google Scholar 

  11. Peng T, Luo YH, Tang LB, He ZJ, Yan C, Mao J, Dai KH, Wu XW, Zheng JC. MoSe2@N, P-C composites for sodium ion battery. J Cent South Univ. 2022;29:2991. https://doi.org/10.1007/s11771-022-5126-2.

    Article  CAS  Google Scholar 

  12. Pan J, Wang NN, Zhou YL, Yang XF, Zhou WY, Qian YT, Yang J. Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Res. 2017;10:1794. https://doi.org/10.1007/s12274-017-1501-y.

    Article  CAS  Google Scholar 

  13. Li K, Yue L, Hu JM, Zhou X, Xiao MM, Dai CZ, Tian CX, Yue YT, Zhang WH, Zhang JJ. Construction of hollow core-shell Sb2S3/S@S-doped C composite based on complexation reaction for high performance anode of sodium-ion batteries. Appl Surf Sci. 2023;613:156111. https://doi.org/10.1016/j.apsusc.2022.156111.

    Article  CAS  Google Scholar 

  14. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit LJ. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc. 2012;134:20805. https://doi.org/10.1021/ja310347x.

    Article  CAS  PubMed  Google Scholar 

  15. Cui CY, Xu JT, Zhang YQ, Wei ZX, Mao ML, Lian X, Wang SY, Yang CY, Fan XL, Ma JM, Wang CS. Antimony nanorod encapsulated in cross-linked carbon for high-performance sodium ion battery anodes. Nano Lett. 2019;19:538. https://doi.org/10.1021/acs.nanolett.8b04468.

    Article  CAS  PubMed  Google Scholar 

  16. Li DD, Zhao SF, Li JZ, Yuan ZY, Cao JM, Fu XY, Zhang YM, Wang LL, Han W. Ultrafine Sb2S3@carbon-nanofibers for fast and stable sodium storage. Electrochim Acta. 2022;411:140067. https://doi.org/10.1016/j.electacta.2022.140067.

    Article  CAS  Google Scholar 

  17. Fu T, Li PC, He HC, Ding SS, Cai Y, Zhang M. Electrospinning with sulfur powder to prepare CNF@G-Fe9S10 nanofibers with controllable particles distribution for stable potassium-ion storage. Rare Met. 2023;42(1):111. https://doi.org/10.1007/s12598-022-02103-0.

    Article  CAS  Google Scholar 

  18. Liu X, Zhu JY, Wang XY, Yue LG, Wang W, Wang BC, Shen DJ, Li YY. Boosting potassium storage kinetics, stability, and volumetric performance of honeycomb-like porous red phosphorus via in situ embedding self-growing conductive nano-metal networks. Adv Funct Mater. 2023;33:2209388. https://doi.org/10.1002/adfm.202209388.

    Article  CAS  Google Scholar 

  19. Liu X, Zhu JL, Yue LG, Wang XY, Wang W, Zheng TJ, Li YY. Green and scalable template-free strategy to fabricate honeycomb-like interconnected porous micro-sized layered Sb for high-performance potassium storage. Small. 2022;18: e2204552. https://doi.org/10.1002/smll.202204552.

    Article  CAS  PubMed  Google Scholar 

  20. Liu ZG, Lu DZ, Wang W, Yue LG, Zhu JL, Zhao LG, Zheng H, Wang JB, Li YY. Integrating dually encapsulated Si architecture and dense structural engineering for ultrahigh volumetric and areal capacity of lithium storage. ACS Nano. 2022;16:4642. https://doi.org/10.1021/acsnano.1c11298.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao XX, Wang JY, Yu RB, Wang D. Construction of multishelled binary metal oxides via coabsorption of positive and negative ions as superior cathode for sodium-ion batteries. J Am Chem Soc. 2018;140:17114. https://doi.org/10.1021/jacs.8b09241.

    Article  CAS  PubMed  Google Scholar 

  22. Ma LL, Hou BX, Zhang H, Yuan ST, Zhao B, Liu Y, Qi XR, Liu HY, Zhang SH, Song JJ, Zhao XX. Regulation of MIL-88B(Fe) to design FeS2 core-shelled hollow sphere as high-rate anode for a full sodium-ion battery. Chem Eng J. 2023;453:139735. https://doi.org/10.1016/j.cej.2022.139735.

    Article  CAS  Google Scholar 

  23. Gao TP, Wong KW, Ng KM. Impacts of morphology and N-doped carbon encapsulation on electrochemical properties of NiSe for lithium storage. Energy Storage Mater. 2020;25:210. https://doi.org/10.1016/j.ensm.2019.10.013.

    Article  Google Scholar 

  24. Lin YM, Abel PR, Gupta A, Goodenough JB, Heller A, Mullins CB. Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. ACS Appl Mater Interfaces. 2013;5:8273. https://doi.org/10.1021/am4023994.

    Article  CAS  PubMed  Google Scholar 

  25. Baggetto L, Allcorn E, Unocic RR, Manthiram A, Veith GM. Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. J Mater Chem A. 2013;1:11163. https://doi.org/10.1039/C3TA12040F.

    Article  CAS  Google Scholar 

  26. Zhao YB, Manthiram A. Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. Chem Mater. 2015;51:13205. https://doi.org/10.1039/C5CC03825A.

    Article  CAS  Google Scholar 

  27. Huang YX, Wang ZH, Jiang Y, Li SJ, Wang M, Ye YS, Wu F, Xie M, Li L, Chen RJ. Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics. Adv Sci. 2018;5:1800613. https://doi.org/10.1002/advs.201800613.

    Article  CAS  Google Scholar 

  28. Sun YY, Li SQ, Wang CR, Qian YX, Zheng SY, Yuan T. Research progress of layered transition metal oxide cathode materials for sodium ion batteries. Chin J Rare Met. 2022;46(6):776. https://doi.org/10.13373/j.cnki.cjrm.XY22020014.

    Article  Google Scholar 

  29. Xu JL, Zhang X, Miao YX, Wen MX, Yan WJ, Lu P, Wang ZR, Sun Q. In-situ plantation of Fe3O4@C nanoparticles on reduced graphene oxide nanosheet as high-performance anode for lithium/sodium-ion batteries. Appl Surf Sci. 2021;546:149163. https://doi.org/10.1016/j.apsusc.2021.149163.

    Article  CAS  Google Scholar 

  30. Xiao HB, Wang WL, Pi SF, Cheng Y, Xie QJ. Anodic stripping voltammetry analysis of mercury(II) on a pyridine-Au/pyridine/glassy carbon electrode. Sens Actuat B Chem. 2020;317: 128202. https://doi.org/10.1016/j.snb.2020.128202.

    Article  CAS  Google Scholar 

  31. Walton RA. The X-ray photoelectron spectra of metal complexes of sulfur-containing ligands: sulfur 2p binding energies. Coor Chem Rev. 1980;31:183. https://doi.org/10.1016/S0010-8545(00)80449-X.

    Article  CAS  Google Scholar 

  32. Morelli G, Polzonetti G, Sessa V. Effects of electron density shift in five-coordinated Pt(II) complexes with olefins: an XPS study. Polyhedron. 1985;4:1185. https://doi.org/10.1016/S0277-5387(00)84103-0Pt(II).

    Article  CAS  Google Scholar 

  33. Liu ZM, Yu X-Y, Lou XW, Paik U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ Sci. 2016;9:2314. https://doi.org/10.1039/C6EE01501H.

    Article  CAS  Google Scholar 

  34. Dong SH, Li CX, Li ZQ, Zhang LY, Yin LW. Mesoporous hollow Sb/ZnS@C core–shell heterostructures as anodes for high-performance sodium-ion batteries. Small. 2018;14: e1704517. https://doi.org/10.1002/smll.201704517.

    Article  CAS  PubMed  Google Scholar 

  35. Xiong QT, He HC, Zhang M. Design of flexible films based on kinked carbon nanofibers for high rate and stable potassium-ion storage. Nano Micro Lett. 2022;14:47. https://doi.org/10.1007/s40820-022-00791-y.

    Article  CAS  Google Scholar 

  36. Wang P, Wang J, Wang XF, Yu HG, Yu JG, Lei M, Wang YG. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl Catal B: Environ. 2013;132–133:452. https://doi.org/10.1016/j.apcatb.2012.12.009.

    Article  CAS  Google Scholar 

  37. Lin XP, Xue FF, Zhang ZG, Li QH. Sb nanoparticles encapsulated in N-doped carbon nanotubes as freestanding anodes for high-performance lithium and potassium ion batteries. Rare Met. 2023;42(2):449. https://doi.org/10.1007/s12598-022-02143-6.

    Article  CAS  Google Scholar 

  38. Li Y, Ou C, Zhu J, Liu Z, Yu J, Li W, Zhang Q, Guo Z. Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene-encapsulated nitrogen-doped carbon@Sn compact monolith. Nano Lett. 2020;20:2034. https://doi.org/10.1021/acs.nanolett.9b05349.

    Article  CAS  PubMed  Google Scholar 

  39. Wang ZM, Zeng FM, Zhang DY, Wang XY, Yang WL, Cheng Y, Li C, Wang LM. Equably dispersed Sb/Sb2O3 nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible lithium/sodium storage. Electrochim Acta. 2021;395: 139210. https://doi.org/10.1016/j.electacta.2021.139210.

    Article  CAS  Google Scholar 

  40. Han X, Wang S, Xu Y, Zhong G, Zhou Y, Bo L, Xiao Y, Wang X, Li Y, Zhang Z, Chen S, Wang C, Yang Y, Zhang W, Wang J, Liu J, Yang J. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy Environ Sci. 2021;14:5044. https://doi.org/10.1039/D1EE01494C.

    Article  CAS  Google Scholar 

  41. Wang X, Hwang JY, Myung ST, Hassoun J, Sun YK. Graphene decorated by indium sulfide nanoparticles as high-performance anode for sodium-ion batteries. ACS Appl Mater Interfaces. 2017;9:23723. https://doi.org/10.1021/acsami.7b05057.

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Guo XT, Zhang ST, Pang H. Promoting performance of lithium-sulfur battery via in situ sulfur reduced graphite oxide coating. Rare Met. 2021;40(2):417. https://doi.org/10.1007/s12598-020-01498-y.

    Article  CAS  Google Scholar 

  43. He W, Chen K, Pathak R, Hummel M, Reza KM, Ghimire N, Pokharel J, Lu S, Gu ZR, Qiao QQ, Zhou Y. High-mass-loading Sn-based anode boosted by pseudocapacitance for long-life sodium-ion batteries. Chem Eng J. 2021;414:128638. https://doi.org/10.1016/j.cej.2021.128638.

    Article  CAS  Google Scholar 

  44. Hou HS, Jing MJ, Huang ZD, Yang YC, Zhang Y, Chen J, Wu ZB, Ji XB. One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2015;7:19362. https://doi.org/10.1021/acsami.5b05509.

    Article  CAS  PubMed  Google Scholar 

  45. Kang C, Zhou SP, Liu JL, Zhu YF, Hu AP, Tang QL, Zhang Y, Chen XH, Tao T. Confining Sb nanoparticles in bamboo-like hierarchical porous aligned carbon nanotubes as an anode for sodium ion batteries with ultralong cycling performance. J Mater Chem A. 2021;9:2152. https://doi.org/10.1039/D0TA10556B.

    Article  CAS  Google Scholar 

  46. Yuan YT, Yang M, Liu L, Xia J, Yan HX, Liu JF, Wen JX, Zhang Y, Wang XY. Electrochemical storage mechanism of In2S3/C nanofiber anode for high-performance Li-ion and Na-ion batteries. Nanoscale. 2020;12:20337. https://doi.org/10.1039/d0nr04843g.

    Article  CAS  PubMed  Google Scholar 

  47. Gu LH, Han JJ, Chen MF, Zhou WJ, Wang XF, Xu M, Lin HC, Liu HD, Chen HX, Chen JZ, Zhang QB, Han X. Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries. Energy Storage Mater. 2022;52:547. https://doi.org/10.1016/j.ensm.2022.08.028.

    Article  Google Scholar 

  48. Han X, Zhou WJ, Chen MF, Chen JH, Wang GW, Liu B, Luo LS, Chen SY, Zhang QB, Shi SQ, Wong CP. Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. J Energy Chem. 2022;67:727. https://doi.org/10.1016/j.jechem.2021.11.021.

    Article  CAS  Google Scholar 

  49. Pan J, Chen SL, Fu Q, Sun YW, Zhang YC, Lin N, Gao P, Yang J, Qian YT. Layered-structure SbPO4/reduced graphene oxide: an advanced anode material for sodium ion batteries. ACS Nano. 2018;12:12869. https://doi.org/10.1021/acsnano.8b08065.

    Article  CAS  PubMed  Google Scholar 

  50. Bera S, Roy A, Guria AK, Mitra S, Pradhan N. Insights of diffusion doping in formation of dual-layered material and doped heterostructure SnS-Sn:Sb2S3 for sodium ion storage. J Phys Chem Lett. 2019;10:1024. https://doi.org/10.1021/acs.jpclett.9b00107.

    Article  CAS  PubMed  Google Scholar 

  51. Dashairya L, Das D, Saha P. Elucidating the role of graphene and porous carbon coating on nanostructured Sb2S3 for superior lithium and sodium storage. J Alloys Compd. 2021;883:160906. https://doi.org/10.1016/j.jallcom.2021.160906.

    Article  CAS  Google Scholar 

  52. Yang J, Li JB, Wang TY, Notten PHL, Ma H, Liu ZG, Wang CY, Wang GX. Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries. Chem Eng J. 2021;407:127169. https://doi.org/10.1016/j.cej.2020.127169.

    Article  CAS  Google Scholar 

  53. Zhang Q, Zeng YP, Wang X, Wang L, Wang H, Xiao JR, Li XY. Sb2S3 nanoparticles anchored on N-doped 3D carbon nanofibers as anode material for sodium ion batteries with improved electrochemical performance. J Alloys Compd. 2021;881:160594. https://doi.org/10.1016/j.jallcom.2021.160594.

    Article  CAS  Google Scholar 

  54. Chen H, Chen N, Zhang MN, Li ML, Gao Y, Wang CZ, Chen G, Du F. Ti3C2Tx MXene decorated with Sb nanoparticles as anodes material for sodium-ion batteries. Nanotechnology. 2019;30:134001. https://doi.org/10.1088/1361-6528/aafcef.

    Article  CAS  PubMed  Google Scholar 

  55. Liao S, Wang XW, Hu HW, Chen DC, Zhang M, Luo J. Carbon-encapsulated Sb6O13 nanoparticles for an efficient and durable sodium-ion battery anode. J Alloys Compd. 2021;852: 156939. https://doi.org/10.1016/j.jallcom.2020.156939.

    Article  CAS  Google Scholar 

  56. Wang ZY, Duan CQ, Wang D, Dong KZ, Luo SH, Liu YG, Wang Q, Zhang YH, Hao AM. BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution. J Colloid Interface Sci. 2020;580:429. https://doi.org/10.1016/j.jcis.2020.07.061.

    Article  CAS  PubMed  Google Scholar 

  57. Xu H, Wang WJ, Qin LG, Yu GX, Ren LH, Jiang YQ, Chen J. Controllable synthesis of anatase TiO2 nanosheets grown on amorphous TiO2/C frameworks for ultrafast pseudocapacitive sodium storage. ACS Appl Mater Interfaces. 2020;12:43813. https://doi.org/10.1021/acsami.0c13142.

    Article  CAS  PubMed  Google Scholar 

  58. Zhong SY, Liu HZ, Wei DH, Hu J, Zhang H, Hou HS, Peng MX, Zhang GH, Duan HG. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem Eng J. 2020;395:125054. https://doi.org/10.1016/j.cej.2020.125054.

    Article  CAS  Google Scholar 

  59. Liu L, Chen Y, Xie YH, Tao P, Li QY, Yan CL. Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv Funct Mater. 2018;28:1801989. https://doi.org/10.1002/adfm.201801989.

    Article  CAS  Google Scholar 

  60. Mohammad I, Blondeau L, Foy E, Leroy J, Leroy E, Khodja H, Gauthier M. Nanostructured intermetallic InSb as a high-capacity and high-performance negative electrode for sodium-ion batteries. Sustain Energy Fuels. 2021;5:3825. https://doi.org/10.1039/D1SE00386K.

    Article  CAS  Google Scholar 

  61. Chen CM, Yang YC, Tang X, Qiu RH, Wang SY, Cao GZ, Zhang M. Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small. 2019;15:e1804740.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 42007138, 51772082 and 51804106) and the Natural Science Foundation of Hunan Province (No. 2023JJ10005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Yang or Ming Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3757 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, JY., Yu, XL., Chen, CM. et al. Pyridine-regulated Sb@InSbS3 ultrafine nanoplates as high-capacity and long-cycle anodes for sodium-ion batteries. Rare Met. 43, 2080–2092 (2024). https://doi.org/10.1007/s12598-023-02582-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02582-9

Keywords

Navigation