Nano Research

, Volume 10, Issue 9, pp 3035–3048 | Cite as

Co-Co3O4@carbon core–shells derived from metal−organic framework nanocrystals as efficient hydrogen evolution catalysts

Research Article

Abstract

Controllable pyrolysis of metal−organic frameworks (MOFs) in confined spaces is a promising strategy for the design and development of advanced functional materials. In this study, Co-Co3O4@carbon composites were synthesized via pyrolysis of a Co-MOFs@glucose polymer (Co-MOFs@GP) followed by partial oxidation of Co nanoparticles (NPs). The pyrolysis of Co-MOFs@GP generated a core–shell structure composed of carbon shells and Co NPs. The controlled partial oxidation of Co NPs formed Co-Co3O4 heterojunctions confined in carbon shells. Compared with Co-MOFs@GP and Co@carbon-n (Co@C-n), Co-Co3O4@carbon-n (Co-Co3O4@C-n) exhibited higher catalytic activity during NaBH4 hydrolysis. Co-Co3O4@C-II provided a maximum specific H2 generation rate of 5,360 mL·min−1·gCo−1 at room temperature due to synergistic interactions between Co and Co3O4 NPs. The Co NPs also endowed Co-Co3O4@C-n with the ferromagnetism needed to complete the magnetic momentum transfer process. This assembly-pyrolysis-oxidation strategy may be an efficient method of preparing novel nanocomposites.

Keywords

Co-metal−organic frameworks (MOFs) core–shell NaBH4 hydrolysis pyrolysis synergistic effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1519_MOESM1_ESM.pdf (6.3 mb)
Co-Co3O4@carbon core–shells derived from metal−organic framework nanocrystals as efficient hydrogen evolution catalysts

References

  1. [1]
    Wu, R. B.; Wang, D. P.; Rui, X. H.; Liu, B.; Zhou, K.; Law, A. W. K.; Yan, Q. Y.; Wei, J.; Chen, Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for highperformance lithium-ion batteries. Adv. Mater. 2015, 27, 3038–3044.CrossRefGoogle Scholar
  2. [2]
    Amali, A. J.; Hoshino, H.; Wu, C.; Ando, M.; Xu, Q. From metal–organic framework to intrinsically fluorescent carbon nanodots. Chem.—Eur. J. 2014, 20, 8279–8282.CrossRefGoogle Scholar
  3. [3]
    Cho, W.; Park, S.; Oh, M. Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods. Chem. Commun. 2011, 47, 4138–4140.CrossRefGoogle Scholar
  4. [4]
    Aiyappa, H. B.; Pachfule, P.; Banerjee, R.; Kurungot, S. Porous carbons from nonporous MOFs: Influence of ligand characteristics on intrinsic properties of end carbon. Cryst. Growth Des. 2013, 13, 4195–4199.CrossRefGoogle Scholar
  5. [5]
    Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core–shell metal–organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580.CrossRefGoogle Scholar
  6. [6]
    Srinivas, G.; Krungleviciute, V.; Guo, Z. X.; Yildirim, T. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 2014, 7, 335–342.CrossRefGoogle Scholar
  7. [7]
    Jia, Y.; Sun, C. H.; Peng, Y.; Fang, W. Q.; Yan, X. C.; Yang, D. J.; Zou, J.; Mao, S. S.; Yao, X. D. Metallic Ni nanocatalyst in situ formed from a metal–organic-framework by mechanochemical reaction for hydrogen storage in magnesium. J. Mater. Chem. A 2015, 3, 8294–8299.CrossRefGoogle Scholar
  8. [8]
    Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 2015, 9, 1592–1599.CrossRefGoogle Scholar
  9. [9]
    Liu, J. Y.; Yan, J.; Ji, H. Y.; Xu, Y. G.; Huang, L. Y.; Li, Y. P.; Song, Y. H.; Zhang, Q.; Xu, H.; Li, H. M. Controlled synthesis of ordered mesoporous g-C3N4 with a confined space effect on its photocatalytic activity. Mater. Sci. Semicon. Proc. 2016, 46, 59–68.CrossRefGoogle Scholar
  10. [10]
    Manna, P.; Debgupta, J.; Bose, S.; Das, S. K. A mononuclear CoII coordination complex locked in a confined space and acting as an electrochemical water-oxidation catalyst: A “ship-in-a-bottle” approach. Angew. Chem., Int. Ed. 2016, 55, 2425–2430.CrossRefGoogle Scholar
  11. [11]
    Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo, Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z. et al. Graphene/sulfur hybrid nanosheets from a space-confined “Sauna” reaction for high-performance lithium–sulfur batteries. Adv. Mater. 2015, 27, 5936–5942.CrossRefGoogle Scholar
  12. [12]
    Xu, S. K.; Zhang, P.; Li, H. B.; Wei, H. J.; Li, L. M.; Li, B. J.; Wang, X. Y. Ru nanoparticles confined in carbon nanotubes: Supercritical CO2 assisted preparation and improved catalytic performances in hydrogenation of D-glucose. RSC Adv. 2014, 4, 7079–7083.CrossRefGoogle Scholar
  13. [13]
    Zou, F.; Chen, Y. P.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386.CrossRefGoogle Scholar
  14. [14]
    Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989.CrossRefGoogle Scholar
  15. [15]
    Bi, Q. Y.; Lin, J. D.; Liu, Y. M.; He, H. Y.; Huang, F. Q.; Cao, Y. Dehydrogenation of formic acid at room temperature: Boosting palladium nanoparticle efficiency by coupling with pyridinic nitrogen-doped carbon. Angew. Chem., Int. Ed. 2016, 55, 11849–11853.CrossRefGoogle Scholar
  16. [16]
    Xia, W.; Zou, R. Q.; An, L.; Xia, D. G.; Guo, S. J. A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576.CrossRefGoogle Scholar
  17. [17]
    Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.CrossRefGoogle Scholar
  18. [18]
    Wu, G. P.; Wang, J.; Ding, W.; Nie, Y.; Li, L.; Qi, X. Q.; Chen, S. G.; Wei, Z. D. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal. Angew. Chem., Int. Ed. 2016, 55, 1340–1344.CrossRefGoogle Scholar
  19. [19]
    Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10, 2342–2348.CrossRefGoogle Scholar
  20. [20]
    Wang, J.; Zhang, X. B.; Wang, Z. L.; Wang, L. M.; Zhang, Y. Rhodium-nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ. Sci. 2012, 5, 6885–6888.CrossRefGoogle Scholar
  21. [21]
    Wang, J.; Qin, Y. L.; Liu, X.; Zhang, X. B. In situ synthesis of magnetically recyclable graphene-supported Pd@Co core–shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J. Mater. Chem. 2012, 22, 12468–12470.CrossRefGoogle Scholar
  22. [22]
    Qin, Y. L.; Wang, J.; Meng, F. Z.; Wang, L. M.; Zhang, X. B. Efficient PdNi and PdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature. Chem. Commun. 2013, 49, 10028–10030.CrossRefGoogle Scholar
  23. [23]
    Wang, Z. L.; Hao, X. F.; Jiang, Z.; Sun, X. P.; Xu, D.; Wang, J.; Zhong, H. X.; Meng, F. L.; Zhang, X. B. C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15070–15073.CrossRefGoogle Scholar
  24. [24]
    Zhou, L. M.; Zhang, T. R.; Tao, Z. L.; Chen, J. Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane. Nano Res. 2014, 7, 774–781.CrossRefGoogle Scholar
  25. [25]
    Yan, J. M.; Zhang, X. B.; Akita, T.; Haruta, M.; Xu, Q. One-step seeding growth of magnetically recyclable Au@Co core–shell nanoparticles: Highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 5326–5327.CrossRefGoogle Scholar
  26. [26]
    Zhu, J.; Li, R.; Niu, W. L.; Wu, Y. J.; Gou, X. L. Facile hydrogen generation using colloidal carbon supported cobalt to catalyze hydrolysis of sodium borohydride. J. Power Sources 2012, 211, 33–39.CrossRefGoogle Scholar
  27. [27]
    Lu, A. L.; Chen, Y. Z.; Jin, J. R.; Yue, G. H.; Peng, D. L. CoO nanocrystals as a highly active catalyst for the generation of hydrogen from hydrolysis of sodium borohydride. J. Power Sources 2012, 220, 391–398.CrossRefGoogle Scholar
  28. [28]
    Niu, W. L.; Ren, D. B.; Han, Y. Y.; Wu, Y. J.; Gou, X. L. Optimizing preparation of carbon supported cobalt catalyst for hydrogen generation from NaBH4 hydrolysis. J. Alloys Compd. 2012, 543, 159–166.CrossRefGoogle Scholar
  29. [29]
    Zhang, H.; Ling, T.; Du, X. W. Gas-phase cation exchange toward porous single-crystal CoO nanorods for catalytic hydrogen production. Chem. Mater. 2015, 27, 352–357.CrossRefGoogle Scholar
  30. [30]
    Mahmood, J.; Jung, S. M.; Kim, S. J.; Park, J.; Yoo, J. W.; Baek, J. B. Cobalt oxide encapsulated in C2N-h 2D network polymer as a catalyst for hydrogen evolution. Chem. Mater. 2015, 27, 4860–4864.CrossRefGoogle Scholar
  31. [31]
    Liu, Y. Y.; Zhang, J.; Zhang, X. J.; Li, B. J.; Wang, X. Y.; Cao, H. Q.; Wei, D.; Zhou, Z. F.; Cheetham, A. K. Magnetic catalysts as nanoactuators to achieve simultaneous momentumtransfer and continuous-flow hydrogen production. J. Mater. Chem. A 2016, 4, 4280–4287.CrossRefGoogle Scholar
  32. [32]
    Xing, C. C.; Liu, Y. Y.; Su, Y. H.; Chen, Y. H.; Hao, S.; Wu, X. L.; Wang, X. Y.; Cao, H. Q.; Li, B. J. Structural evolution of Co-based metal organic frameworks in pyrolysis for synthesis of core–shells on nanosheets: Co@CoOx@carbonrGO composites for enhanced hydrogen generation activity. ACS Appl. Mater. Interfaces 2016, 8, 15430–15438.CrossRefGoogle Scholar
  33. [33]
    Duan, S. S.; Han, G. S.; Su, Y. H.; Zhang, X. Y.; Liu, Y. Y.; Wu, X. L.; Li, B. J. Magnetic Co@g-C3N4 core–shells on rGO sheets for momentum transfer with catalytic activity toward continuous-flow hydrogen generation. Langmuir 2016, 32, 6272–6281.CrossRefGoogle Scholar
  34. [34]
    Yu, G. L.; Sun, J.; Muhammad, F.; Wang, P. Y.; Zhu, G. S. Cobalt-based metal organic framework as precursor to achieve superior catalytic activity for aerobic epoxidation of styrene. RSC Adv. 2014, 4, 38804–38811.CrossRefGoogle Scholar
  35. [35]
    Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.CrossRefGoogle Scholar
  36. [36]
    Rong, C. B.; Poudyal, N.; Chaubey, G. S.; Nandwana, V.; Liu, Y.; Wu, Y. Q.; Kramer, M. J.; Kozlov, M. E.; Baughman, R. H.; Liu, J. P. High thermal stability of carbon-coated L10-FePt nanoparticles prepared by salt-matrix annealing. J. Appl. Phys. 2008, 103, 07E131.CrossRefGoogle Scholar
  37. [37]
    Qian, J. F.; Sun, F. A.; Qin, L. Z. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223.CrossRefGoogle Scholar
  38. [38]
    Zhou, Y. X.; Chen, Y. Z.; Cao, L. N.; Lu, J. L.; Jiang, H. L. Conversion of a metal–organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: Direct oxidation of alcohols to esters. Chem. Commun. 2015, 51, 8292–8295.CrossRefGoogle Scholar
  39. [39]
    Lin, K. Y. A.; Hsu, F. K.; Lee, W. D. Magnetic cobaltgraphene nanocomposite derived from self-assembly of MOFs with graphene oxide as an activator for peroxymonosulfate. J. Mater. Chem. A 2015, 3, 9480–9490.CrossRefGoogle Scholar
  40. [40]
    Zhong, S.; Zhan, C. X.; Cao, D. P. Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 2015, 8, 51–59.CrossRefGoogle Scholar
  41. [41]
    Liu, Y. W.; Xiao, C.; Lyu, M. J.; Lin, Y.; Cai, W. Z.; Huang, P. C.; Tong, W.; Zou, Y. M.; Xie, Y. Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew. Chem., Int. Ed. 2015, 54, 11231–11235.CrossRefGoogle Scholar
  42. [42]
    Gao, S.; Li, G. D.; Liu, Y. P.; Chen, H.; Feng, L. L.; Wang, Y.; Yang, M.; Wang, D. J.; Wang, S.; Zou, X. X. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons. Nanoscale 2015, 7, 2306–2316.CrossRefGoogle Scholar
  43. [43]
    Liu, B.; Kong, D. Z.; Zhang, J.; Wang, Y.; Chen, T. P.; Cheng, C. W.; Yang, H. Y. 3D hierarchical Co3O4@Co3S4 nanoarrays as cathode materials for asymmetric pseudocapacitors. J. Mater. Chem. A 2016, 4, 3287–3296.CrossRefGoogle Scholar
  44. [44]
    Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.CrossRefGoogle Scholar
  45. [45]
    Wei, J.; Hu, Y. X.; Liang, Y.; Kong, B.; Zhang, J.; Song, J. C.; Bao, Q. L.; Simon, G. P.; Jiang, S. P.; Wang, H. T. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 2015, 25, 5768–5777.CrossRefGoogle Scholar
  46. [46]
    Huang, Y. C.; Ye, K. H.; Li, H. B.; Fan, W. J.; Zhao, F. Y.; Zhang, Y. M.; Ji, H. B. A highly durable catalyst based on CoxMn3–xO4 nanosheets for low-temperature formaldehyde oxidation. Nano Res. 2016, 9, 3881–3892.CrossRefGoogle Scholar
  47. [47]
    Fu, L.; Liu, Z. M.; Liu, Y. Q.; Han, B. X.; Hu, P. G.; Cao, L. C.; Zhu, D. B. Beaded cobalt oxide nanoparticles along carbon nanotubes: Towards more highly integrated electronic devices. Adv. Mater. 2005, 17, 217–221.CrossRefGoogle Scholar
  48. [48]
    Kong, L. J.; Ren, Z. Y.; Zheng, N. N.; Du, S. C.; Wu, J.; Tang, J. L.; Fu, H. G. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469–480.CrossRefGoogle Scholar
  49. [49]
    Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016, 9, 317–328.CrossRefGoogle Scholar
  50. [50]
    Ingier-Stocka, E. TG and DTA evaluation of cobalt salts and complexes mixed with activated carbon. J. Therm. Anal. Calorim. 2001, 65, 561–573.CrossRefGoogle Scholar
  51. [51]
    Pu, J.; Li, C. W.; Tang, L.; Li, T. T.; Ling, L.; Zhang, K.; Xu, Y. C.; Li, Q. W.; Yao, Y. G. Impregnation assisted synthesis of 3D nitrogen-doped porous carbon with high capacitance. Carbon 2015, 94, 650–660.CrossRefGoogle Scholar
  52. [52]
    Yang, Y.; Lun, Z. Y.; Xia, G. L.; Zheng, F. C.; He, M. N.; Chen, Q. W. Non-precious alloy encapsulated in nitrogendoped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ. Sci. 2015, 8, 3563–3571.CrossRefGoogle Scholar
  53. [53]
    Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. ZIF-8 derived graphenebased nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 14235–14239.CrossRefGoogle Scholar
  54. [54]
    Liu, Y. Y.; Zhang, W. N.; Li, S. Z.; Cui, C. L.; Wu, J.; Chen, H. Y.; Huo, F. W. Designable yolk–shell nanoparticle@MOF petalous heterostructures. Chem. Mater. 2014, 26, 1119–1125.CrossRefGoogle Scholar
  55. [55]
    Lü, Y. Y.; Zhan, W. W.; He, Y.; Wang, Y. T.; Kong, X. J.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195.CrossRefGoogle Scholar
  56. [56]
    Torad, N. L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A. A.; Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y. Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 2014, 10, 2096–2107.CrossRefGoogle Scholar
  57. [57]
    Lü, Y. Y.; Wang, Y. T.; Li, H. L.; Lin, Y.; Jiang, Z. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 13604–13611.CrossRefGoogle Scholar
  58. [58]
    Metin, Ö.; Mazumder, V.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469.CrossRefGoogle Scholar
  59. [59]
    Seven, F.; Sahiner, N. Metal ion-imprinted hydrogel with magnetic properties and enhanced catalytic performances in hydrolysis of NaBH4 and NH3BH3. Int. J. Hydrogen Energy 2013, 38, 15275–15284.CrossRefGoogle Scholar
  60. [60]
    Ye, W.; Zhang, H. M.; Xu, D. Y.; Ma, L.; Yi, B. L. Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst. J. Power Sources 2007, 164, 544–548.CrossRefGoogle Scholar
  61. [61]
    Liu, B. H.; Li, Z. P.; Suda, S. Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride. J. Alloys Compd. 2006, 415, 288–293.CrossRefGoogle Scholar
  62. [62]
    Feng, K.; Zhong, J.; Zhao, B. H.; Zhang, H.; Xu, L.; Sun, X. H.; Lee, S. T. CuxCo1–xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia-borane. Angew. Chem., Int. Ed. 2016, 55, 11950–11954.CrossRefGoogle Scholar
  63. [63]
    Akdim, O.; Demirci, U. B.; Miele, P. Deactivation and reactivation of cobalt in hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2011, 36, 13669–13675.CrossRefGoogle Scholar
  64. [64]
    Demirci, U. B.; Miele, P. Cobalt-based catalysts for the hydrolysis of NaBH4 and NH3BH3. Phys. Chem. Chem. Phys. 2014, 16, 6872–6885.CrossRefGoogle Scholar
  65. [65]
    Ozerova, A. M.; Simagina, V. I.; Komova, O. V.; Netskina, O. V.; Odegova, G. V.; Bulavchenko, O. A.; Rudina, N. A. Cobalt borate catalysts for hydrogen production via hydrolysis of sodium borohydride. J. Alloys Compd. 2012, 513, 266–272.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations