Skip to main content
Log in

Mesocrystalline TiO2 nanosheet arrays with exposed {001} facets: Synthesis via topotactic transformation and applications in dye-sensitized solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A facile, fluorine-free approach for synthesizing vertically aligned arrays of mesocrystalline anatase TiO2 nanosheets with highly exposed {001} facets was developed through topotactic transformation. Unique mesocrystalline {001}-faceted TiO2 nanosheet arrays vertically aligned on conductive fluorine-doped tin oxide glass were realized through topotactic conversion from single-crystalline precursor nanosheet arrays based on lattice matching between the precursor and the anatase crystals. The morphology and microstructure of the {001}-faceted TiO2 nanosheets could be readily modulated by changing the reactant concentration and annealing temperature. Owing to enhanced dye adsorption, reduced charge recombination, and enhanced light scattering arising from the exposed {001} facets, in addition to the advantageous features of low-dimensional structure arrays (e.g., fast electron transport and efficient charge collection), the obtained TiO2 nanosheet arrays exhibited superior performance when they were used as anodes for dye-sensitized solar cells (DSSCs). Particularly, {001}-faceted TiO2 nanosheet arrays ~15 μm long annealed at 500 °C showed a power conversion efficiency of 7.51%. Furthermore, a remarkable efficiency of 8.85% was achieved for a DSSC based on double-layered TiO2 nanosheet arrays ~35 μm long, which were prepared by conversion from the precursor nanoarrays produced via secondary hydrothermal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

    Article  Google Scholar 

  2. Crossland, E. J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, J. A.; Snaith, H. J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013, 495, 215–219.

    Article  Google Scholar 

  3. Bai, Y.; Mora-Seró, I.; De Angelis, F.; Bisquert, J.; Wang, P. Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 2014, 114, 10095–10130.

    Article  Google Scholar 

  4. Ding, Y.; Xia, X.; Chen, W. C.; Hu, L. H.; Mo, L. E.; Huang, Y.; Dai, S. Y. Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2 microspheres for high-efficiency dye-sensitized solar cells. Nano Res. 2016, 9, 1891–1903.

    Article  Google Scholar 

  5. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

    Article  Google Scholar 

  6. Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043.

    Article  Google Scholar 

  7. Xie, Y. J.; Zhang, X.; Ma, P. J.; Wu, Z. J.; Piao, L. Y. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Res. 2015, 8, 2092–2101.

    Article  Google Scholar 

  8. Wang, W. H.; Dong, J. Y.; Ye, X. Z.; Li, Y.; Ma, Y. R.; Qi, L. M. Heterostructured TiO2 nanorod@nanobowl arrays for efficient photoelectrochemical water splitting. Small 2016, 12, 1469–1478.

    Article  Google Scholar 

  9. Songa T.; Paik, U. TiO2 as an active or supplemental material for lithium batteries. J. Mater. Chem. A 2016, 4, 14–31.

    Article  Google Scholar 

  10. Ye, J. F.; Liu, W.; Cai, J. G.; Chen, S.; Zhao, X. W.; Zhou, H. H.; Qi, L. M. Nanoporous anatase TiO2 mesocrystals: Additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J. Am. Chem. Soc. 2011, 133, 933–940.

    Article  Google Scholar 

  11. Cai, J. G.; Ye, J. F.; Chen, S. Y.; Zhao, X. W.; Zhang, D. Y.; Chen, S.; Ma, Y. R.; Jin, S.; Qi, L. M. Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays. Energy Environ. Sci. 2012, 5, 7575–7581.

    Article  Google Scholar 

  12. Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H.-M. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559–9612.

    Article  Google Scholar 

  13. Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong S.-T.; Mohamed, A. R. Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterization. Nanoscale 2014, 6, 1946–2008.

    Article  Google Scholar 

  14. Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27.

    Article  Google Scholar 

  15. Wang, X. D.; Li, Z. D.; Shi, J.; Yu, Y. H. One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. Chem. Rev. 2014, 114, 9346–9384.

    Article  Google Scholar 

  16. Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454.

    Article  Google Scholar 

  17. Liu, P. R.; Wang, Y.; Zhang, H. M.; An, T. C.; Yang, H. G.; Tang, Z. Y.; Cai, W. P.; Zhao, H. J. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets. Small 2012, 8, 3664–3673.

    Article  Google Scholar 

  18. Yang, L.; Wang, G. Z.; Zhang, H. M.; Zhang, Y. X.; Kang, S. H.; Zhao, H. J. Photoelectrochemical manifestation of intrinsic photoelectron transport properties of vertically aligned {001} faceted single crystal TiO2 nanosheet films. RSC Adv. 2015, 5, 55438–55444.

    Article  Google Scholar 

  19. Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

    Article  Google Scholar 

  20. Hardin, B. E.; Snaith, H. J.; McGehee, M. D. The renaissance of dye-sensitized solar cells. Nat. Photonics 2012, 6, 162–169.

    Article  Google Scholar 

  21. Fakharuddin, A.; Jose, R.; Brown, T. M.; Fabregat-Santiago, F.; Bisquert, J. A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 2014, 7, 3952–3981.

    Google Scholar 

  22. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247.

    Article  Google Scholar 

  23. Zhang, Q. F.; Cao, G. Z. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 2011, 6, 91–109.

    Article  Google Scholar 

  24. Raj, C. C.; Prasanth, R. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources 2016, 317, 120–132.

    Article  Google Scholar 

  25. Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.

    Article  Google Scholar 

  26. Feng, X. J.; Zhu, K.; Frank, A. J.; Grimes, C. A.; Mallouk, T. E. Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires. Angew. Chem., Int. Ed. 2012, 51, 2727–2730.

    Article  Google Scholar 

  27. Yu, H.; Pan, J.; Bai, Y.; Zong, X.; Li, X. Y.; Wang, L. Z. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells. Chem.—Eur. J. 2013, 19, 13569–13574.

    Article  Google Scholar 

  28. Zha, C. Y.; Shen, L. M.; Zhang, X. Y.; Wang, Y. F.; Korgel, B. A.; Gupta, A.; Bao, N. Z. Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 122–129.

    Article  Google Scholar 

  29. Zhong, P.; Ma, X. H.; Chen, X. P.; Zhong, R.; Liu, X. H.; Ma, D. J.; Zhang, M. L.; Li, Z. M. Morphology-controllable polycrystalline TiO2 nanorod arrays for efficient charge collection in dye-sensitized solar cells. Nano Energy 2015, 16, 99–111.

    Article  Google Scholar 

  30. Yu, X.; Wang, H.; Liu, Y.; Zhou, X.; Li, B. J.; Xin, L.; Zhou, Y.; Shen, H. One-step ammonia hydrothermal synthesis of single crystal anatase TiO2 nanowires for highly efficient dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 2110–2117.

    Article  Google Scholar 

  31. Mohammadpour, F.; Moradi, M.; Lee, K.; Cha, G.; So, S.; Kahnt, A.; Guldi, D. M.; Altomare, M.; Schmuki, P. Enhanced performance of dye-sensitized solar cells based on TiO2 nanotube membranes using an optimized annealing profile. Chem. Commun. 2015, 51, 1631–1634.

    Article  Google Scholar 

  32. So, S.; Hwang, I.; Schmuki, P. Hierarchical DSSC structures based on “single walled” TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%. Energy Environ. Sci. 2015, 8, 849–854.

    Article  Google Scholar 

  33. Wu, W.-Q.; Xu, Y.-F.; Su, C.-Y.; Kuang, D.-B. Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells. Energy Environ. Sci. 2014, 7, 644–649.

    Article  Google Scholar 

  34. Que, L. F.; Lan, Z.; Wu, W. X.; Wu, J. H.; Lin, J. M.; Huang, M. L. High-efficiency dye-sensitized solar cells based on ultra-long single crystalline titanium dioxide nanowires. J. Power Sources 2014, 266, 440–447.

    Article  Google Scholar 

  35. Li, H. L.; Yu, Q. J.; Huang, Y. W.; Yu, C. L.; Li, R. Z.; Wang, J. Z.; Guo, F. Y.; Jiao, S. J.; Gao, S. Y.; Zhang, Y. et al. Ultralong rutile TiO2 nanowire arrays for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2016, 8, 13384–13391.

    Article  Google Scholar 

  36. Lv, M. Q.; Zheng, D. J.; Ye, M. D.; Xiao, J.; Guo, W. X.; Lai, Y. K.; Sun, L.; Lin, C. J.; Zuo, J. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy Environ. Sci. 2013, 6, 1615–1622.

    Article  Google Scholar 

  37. Wu, W.-Q.; Lei, B.-X; Rao, H.-S.; Xu, Y.-F.; Wang, Y.-F.; Su, C.-Y.; Kuang, D.-B. Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci. Rep. 2013, 3, 1352.

    Article  Google Scholar 

  38. Wu, W.-Q.; Rao, H.-S.; Feng, H. L.; Chen, H.-Y; Kuang, D.-B.; Su, C.-Y. A family of vertically aligned nanowires with smooth, hierarchical and hyperbranched architectures for efficient energy conversion. Nano Energy 2014, 9, 15–24.

    Article  Google Scholar 

  39. Wu, W.-Q.; Feng, H.-L.; Rao, H.-S.; Xu, Y.-F.; Kuang, D.-B.; Su, C.-Y. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures. Nat. Commun. 2014, 5, 3968.

    Google Scholar 

  40. Li, W. X.; Yang, J. Y.; Jiang, Q. H.; Luo, Y. B.; Hou, Y. R.; Zhou, S. Q.; Zhou, Z. W. Bi-layer of nanorods and threedimensional hierarchical structure of TiO2 for high efficiency dye-sensitized solar cells. J. Power Sources 2015, 284, 428–434.

    Article  Google Scholar 

  41. Wang, H.; Wang, B. Y.; Yu, J. C.; Hu, Y. X.; Xia, C.; Zhang J.; Liu, R. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes. Sci. Rep. 2015, 5, 9305.

    Article  Google Scholar 

  42. Wu, W.-Q.; Xu, Y.-F.; Rao, H.-S.; Su, C.-Y; Kuang, D.-B. Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells. J Am. Chem. Soc. 2014, 136, 6437–6445.

    Article  Google Scholar 

  43. Gu, J. W.; Khan, J.; Chai, Z. S.; Yuan, Y. F.; Yu, X.; Liu, P. Y.; Wu, M. M.; Mai, W. J. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells. J. Power Sources 2016, 303, 57–64.

    Article  Google Scholar 

  44. Yu, J. G.; Fan, J. J.; Lv, K. L. Anatase TiO2 nanosheets with exposed (001) facets: Improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2010, 2, 2144–2149.

    Article  Google Scholar 

  45. Wu, X.; Chen, Z. G.; Lu, G. Q.; Wang, L. Z. Nanosized anatase TiO2 single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of dye-sensitized solar cells. Adv. Funct. Mater. 2011, 21, 4167–4172.

    Article  Google Scholar 

  46. Zhang, J. Y.; Wang, J. J.; Zhao, Z. Y.; Yu, T.; Feng, J. Y.; Yuan, Y. J.; Tang, Z. K.; Liu, Y. H.; Li, Z. S.; Zou, Z. G. Reconstruction of the (001) surface of TiO2 nanosheets induced by the fluorine-surfactant removal process under UV-irradiation for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14, 4763–4769.

    Article  Google Scholar 

  47. Peng, J.-D.; Shih, P.-C.; Lin, H.-H.; Tseng, C.-M.; Vittal, R.; Suryanarayanan, V.; Ho, K.-C. TiO2 nanosheets with highly exposed (001)-facets for enhanced photovoltaic performance of dye-sensitized solar cells. Nano Energy 2014, 10, 212–221.

    Article  Google Scholar 

  48. Yang, W. G.; Li, J. M.; Wang, Y. L.; Zhu, F.; Shi, W. M.; Wan, F. R.; Xu, D. S. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem. Commun. 2011, 47, 1809–1811.

    Google Scholar 

  49. Fang, W. Q.; Yang, X. H.; Zhu, H. J.; Li, Z.; Zhao, H. J.; Yao, X. D.; Yang, H. G. Yolk@shell anatase TiO2 hierarchical microspheres with exposed {001} facets for high-performance dye sensitized solar cells. J. Mater. Chem. 2012, 22, 22082–22089.

    Article  Google Scholar 

  50. Sun, W. W.; Sun, K.; Peng, T.; You, S. J.; Liu, H. M.; Liang, L. L.; Guo, S. H.; Zhao, X.-Z. Constructing hierarchical fastener-like spheres from anatase TiO2 nanosheets with exposed {001} facets for high-performance dye-sensitized solar cells. J. Power Sources 2014, 262, 86–92.

    Article  Google Scholar 

  51. Lei, B.-X; Zhang, P.; Xie, M.-L.; Li, Y.; Wang, S.-N.; Yu, Y.-Y.; Sun, W.; Sun, Z.-F. Constructing hierarchical porous titania microspheres from titania nanosheets with exposed (001) facets for dye-sensitized solar cells. Electrochim. Acta 2015, 173, 497–505.

    Article  Google Scholar 

  52. Peng, J.-D.; Lin, H.-H.; Lee, C.-T.; Tseng, C.-M.; Suryanarayanan, V.; Vittal, R.; Ho, K.-C. Hierarchically assembled microspheres consisting of nanosheets of highly exposed (001)-facets TiO2 for dye-sensitized solar cells. RSC Adv. 2016, 6, 14178–14191.

    Article  Google Scholar 

  53. Sun, W. W.; Peng, T.; Liu, Y. M.; Yu, W. J.; Zhang, K.; Mehnane, H. F.; Bu, C. H.; Guo, S. S.; Zhao, X.-Z. Layerby- layer self-assembly of TiO2 hierarchical nanosheets with exposed {001} facets as an effective bifunctional layer for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 9144–9149.

    Article  Google Scholar 

  54. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

    Article  Google Scholar 

  55. Yu, J. G.; Xiang, Q. J.; Ran, J. R.; Mann, S. One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm 2010, 12, 872–879.

    Article  Google Scholar 

  56. Zhang, D. Q.; Li, G. S.; Wang, H. B.; Chan, K. M.; Yu, J. C. Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets. Cryst. Growth Des. 2010, 10, 1130–1137.

    Article  Google Scholar 

  57. Li, L. S.; Sun, N. J.; Huang, Y. Y.; Qin, Y.; Zhao, N.; Gao, J. N.; Li, M. X.; Zhou, H. H.; Qi, L. M. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 2008, 18, 1194–1201.

    Article  Google Scholar 

  58. Guo, C. F.; Cao, S. H.; Zhang, J. M.; Tang, H. Y.; Guo, S. M.; Tian, Y.; Liu, Q. Topotactic transformations of superstructures: From thin films to two-dimensional networks to nested two-dimensional networks. J. Am. Chem. Soc. 2011, 133, 8211–8215.

    Article  Google Scholar 

  59. Chen, S.; Xin, Y. L.; Zhou, Y. Y.; Ma, Y. R.; Zhou H. H.; Qi, L. M. Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 2014, 7, 1924–1930.

    Article  Google Scholar 

  60. Zhou, L.; Smyth-Boyle, D.; O’Brien, P. A facile synthesis of uniform NH4TiOF3 mesocrystals and their conversion to TiO2 mesocrystals. J. Am. Chem. Soc. 2008, 130, 1309–1320.

    Article  Google Scholar 

  61. Cai, J. G.; Qi, L. M. TiO2 mesocrystals: Synthesis, formation mechanisms and applications. Sci. China Chem. 2012, 55, 2318–2326.

    Article  Google Scholar 

  62. Li, W.; Bai, Y.; Liu, W. J.; Liu, C.; Yang, Z. H.; Feng, X.; Lu, X. H.; Chan, K.-Y. Single-crystalline and reactive facets exposed anatase TiO2 nanofibers with enhanced photocatalytic properties. J. Mater. Chem. 2011, 21, 6718–6724.

    Article  Google Scholar 

  63. Chen, C. D.; Xu, L. F.; Sewvandi, G. A.; Kusunose, T.; Tanaka, Y.; Nakanishi, S.; Feng, Q. Microwave-assisted topochemical conversion of layered titanate nanosheets to {010}-faceted anatase nanocrystals for high performance photocatalysts and dye-sensitized solar cells. Cryst. Growth Des. 2014, 14, 5801–5811.

    Article  Google Scholar 

  64. Chen, C. D.; Ikeuchi, Y.; Xu, L. F.; Sewvandi, G. A.; Kusunose, T.; Tanaka, Y.; Nakanishi, S.; Wen, P. H.; Feng, Q. Synthesis of [111]- and {010}-faceted anatase TiO2 nanocrystals from tri-titanate nanosheets and their photocatalytic and DSSC performances. Nanoscale 2015, 7, 7980–7991.

    Article  Google Scholar 

  65. Hu, D. W.; Zhang, W. X.; Tanaka, Y.; Kusunose, N.; Peng, Y.; Feng, Q. Mesocrystalline nanocomposites of TiO2 polymorphs: Topochemical mesocrystal conversion, characterization, and photocatalytic response. Cryst. Growth Des. 2015, 15, 1214–1225.

    Article  Google Scholar 

  66. Scolan, E.; Sanchez, C. Synthesis and characterization of surface-protected nanocrystalline titania particles. Chem. Mater. 1998, 10, 3217–3223.

    Article  Google Scholar 

  67. Guo, X.-Z; Luo, Y.-H.; Zhang, Y.-D; Huang, X.-C.; Li, D.-M; Meng, Q.-B. Study on the effect of measuring methods on incident photon-to-electron conversion efficiency of dye-sensitized solar cells by home-made setup. Rev. Sci. Instrum. 2010, 81, 103106.

    Article  Google Scholar 

  68. Guo, X.-Z.; Luo, Y.-H.; Li, C.-H.; Qin, D.; Li, D.-M.; Meng, Q.-B. Can the incident photo-to-electron conversion efficiency be used to calculate short-circuit current density of dyesensitized solar cells. Curr. Appl. Phys. 2012, 12, e54–e58.

    Article  Google Scholar 

  69. Dong, C. PowderX: Windows-95-based program for powder X-ray diffraction data processing. J. Appl. Cryst. 1999, 32, 838.

    Article  Google Scholar 

  70. Zhang, X. J.; Zhang, X. H.; Zou, K.; Lee, C. S.; Lee, S.-T. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules. J. Am. Chem. Soc. 2007, 129, 3527–3532.

    Article  Google Scholar 

  71. Fan, X.; Meng, X.-M.; Zhang, X.-H.; Shi, W.-S.; Zhang, W.-J.; Zapien, J. A.; Lee, C.-S.; Lee, S.-T. Dart-shaped tricrystal ZnS nanoribbons. Angew. Chem., Int. Ed. 2006, 45, 2568–2571.

    Article  Google Scholar 

  72. Liu, B. D.; Bando, Y.; Wang, Z. E.; Li, C. Y.; Gao, M.; Mitome, M.; Jiang, X.; Golberg, D. Crystallography of novel T-shaped ZnS nanostructures and their cathodoluminescence. Cryst. Growth Des. 2010, 10, 4143–4147.

    Article  Google Scholar 

  73. Yin, L. W.; Lee, S. T. Wurtzite-twinning-induced growth of three-dimensional II-VI ternary alloyed nanoarchitectures and their tunable band gap energy properties. Nano Lett. 2009, 9, 957–963.

    Article  Google Scholar 

  74. Wu, L. L.; Liu, F. W.; Zhang, X. T. Group III element-doped ZnO twinning nanostructures. CrystEngComm 2011, 13, 4251–4255.

    Article  Google Scholar 

  75. Zhao, C. X.; Li, Y. F.; Zhou, J.; Li, L. Y.; Deng, S. Z.; Xu, N. S.; Chen, J. Large-scale synthesis of bicrystalline ZnO nanowire arrays by thermal oxidation of zinc film: Growth mechanism and high-performance field emission. Cryst. Growth Des. 2013, 13, 2897–2905.

    Article  Google Scholar 

  76. Shahani, A. J.; Voorhees, P. W. Twin-mediated crystal growth. J. Mater. Res. 2016, 31, 2936–2947.

    Article  Google Scholar 

  77. Lei, B.-X.; Zheng, X.-F.; Qiao, H.-K.; Li, Y.; Wang, S.-N.; Huang, G.-L.; Sun, Z.-F. A novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays for high efficiency dye-sensitized solar cells. Electrochim. Acta 2014, 149, 264–270.

    Google Scholar 

  78. Lu, C. H.; Qi, L. M.; Yang, J. H.; Tang, L.; Zhang, D. Y.; Ma, J. M. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chem. Commun. 2006, 3551–3553.

    Google Scholar 

  79. Liu, Z.-H.; Su, X.-J.; Hou, G.-L.; Bi, S.; Xiao, Z.; Jia, H.-P. Enhanced performance for dye-sensitized solar cells based on spherical TiO2 nanorod-aggregate light-scattering layer. J. Power Sources 2012, 218, 280–285.

    Article  Google Scholar 

  80. Zhao, Z. X.; Liu, G. C.; Li, B.; Guo, L. X.; Fei, C. B.; Wang, Y. J.; Lv, L. L.; Liu, X. G.; Tian, J. J.; Cao, G. Z. Dye-sensitized solar cells based on hierarchically structured porous TiO2 filled with nanoparticles. J. Mater. Chem. A 2015, 3, 11320–11329.

    Article  Google Scholar 

  81. Zhang, S. F.; Yang, X. D.; Numata, Y.; Han, L. Y. Highly efficient dye-sensitized solar cells: Progress and future challenges. Energy Environ. Sci. 2013, 6, 1443–1464.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21473004 and 21673007) and the National Basic Research Program of China (No. 2013CB932601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Qi.

Electronic supplementary material

12274_2017_1463_MOESM1_ESM.pdf

Mesocrystalline TiO2 nanosheet arrays with exposed {001} facets: Synthesis via topotactic transformation and applications in dye-sensitized solar cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cai, J., Ma, Y. et al. Mesocrystalline TiO2 nanosheet arrays with exposed {001} facets: Synthesis via topotactic transformation and applications in dye-sensitized solar cells. Nano Res. 10, 2610–2625 (2017). https://doi.org/10.1007/s12274-017-1463-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1463-0

Keywords

Navigation