Nano Research

, Volume 10, Issue 6, pp 2005–2020 | Cite as

Movement of Dirac points and band gaps in graphyne under rotating strain

  • Zhenzhu Li
  • Zhongfan Liu
  • Zhirong LiuEmail author
Research Article


The introduction of lattice anisotropy causes Dirac cones to shift in response to the applied strain, leaving a pseudogap at the original Dirac points. Here, a group-theory analysis is combined with first-principles calculations to reveal the movement characteristics of Dirac points and band gaps in various graphynes under rotating uniaxial and shear strains. Graphene, where linear effects dominate, is different from α-, β-, and γ-graphynes, which generate strong nonlinear responses due to their bendable acetylenic linkages. However, the linear components of the electronic response, which are essential in determining material performance such as intrinsic carrier mobility due to electron–phonon coupling, can be readily separated, and are well described by a unified theory. The movement of the Dirac points in α-graphyne is circular under a rotating strain, and the pseudogap opening is isotropic with a magnitude of only 2% that in graphene. In comparison, the movement in β-graphyne is elliptical and the center is displaced from the origin. For γ-graphyne, three branches of gaps change with the applied strains with a sine/cosine dependence on the strain angle. The developed methodology is useful in determining the electronic response to various strains of Dirac materials and two-dimensional semiconductors.


graphene graphyne Dirac point band gap first-principles strain effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Shuqing Zhang, Zeren Lin, and Ting Cheng for helpful discussions. The work was supported by the National Natural Science Foundation of China (No. 21373015).

Supplementary material

12274_2016_1388_MOESM1_ESM.pdf (4.6 mb)
Movement of Dirac points and band gaps in graphyne under rotating strain


  1. [1]
    Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nature Nanotechnol. 2007, 2, 605–615.CrossRefGoogle Scholar
  2. [2]
    Enyashin, A. N.; Ivanovskii, A. L. Graphene allotropes. Phys. Status Solidi B 2011, 248, 1879–1883.CrossRefGoogle Scholar
  3. [3]
    Wang, J. Y.; Deng, S. B.; Liu, Z. F.; Liu, Z. R. The rare two-dimensional materials with Dirac cones. Natl. Sci. Rev. 2015, 2, 22–39.CrossRefGoogle Scholar
  4. [4]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  5. [5]
    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  6. [6]
    Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for graphene: Graphynes with direction-dependent Dirac cones. Phys. Rev. Lett. 2012, 108, 086804.CrossRefGoogle Scholar
  7. [7]
    Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure property predictions for new planar forms of carbon: Layered phases containing sp 2 and sp atoms. J. Chem. Phys. 1987, 87, 6687–6699.CrossRefGoogle Scholar
  8. [8]
    Haley, M. M.; Brand, S. C.; Pak, J. J. Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures. Angew. Chem., Int. Ed. 1997, 36, 836–838.CrossRefGoogle Scholar
  9. [9]
    Marsden, J. A.; Haley, M. M. Carbon networks based on dehydrobenzoannulenes. 5. Extension of two-dimensional conjugation in graphdiyne nanoarchitectures. J. Org. Chem. 2005, 70, 10213–10226.CrossRefGoogle Scholar
  10. [10]
    Yin, W.-J.; Xie, Y.-E.; Liu, L.-M.; Wang, R.-Z.; Wei, X.-L.; Lau, L.; Zhong, J.-X.; Chen, Y.-P. R-graphyne: A new twodimensional carbon allotrope with versatile Dirac-like point in nanoribbons. J. Mater. Chem. A 2013, 1, 5341–5346.CrossRefGoogle Scholar
  11. [11]
    Wang, X. Q.; Li, H. D.; Wang, J. T. Prediction of a new two-dimensional metallic carbon allotrope. Phys. Chem. Chem. Phys. 2013, 15, 2024–2030.CrossRefGoogle Scholar
  12. [12]
    Haley, M. M. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl. Chem. 2008, 80, 519–532.CrossRefGoogle Scholar
  13. [13]
    Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586.CrossRefGoogle Scholar
  14. [14]
    Peng, Q.; Dearden, A. K.; Crean, J.; Han, L.; Liu, S.; Wen, X.; De, S. New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 2014, 7, 1–29.CrossRefGoogle Scholar
  15. [15]
    Tahara, K.; Yamamoto, Y.; Gross, D. E.; Kozuma, H.; Arikuma, Y.; Ohta, K.; Koizumi, Y.; Gao, Y.; Shimizu, Y.; Seki, S. et al. Syntheses and properties of graphyne fragments: Trigonally expanded dehydrobenzo[12]annulenes. Chem.—Eur. J. 2013, 19, 11251–11260.CrossRefGoogle Scholar
  16. [16]
    Desroches, M.; Courtemanche, M.-A.; Rioux, G.; Morin, J.-F. Synthesis and properties of rhomboidal macrocyclic subunits of graphdiyne-like nanoribbons. J. Org. Chem. 2015, 80, 10634–10642.CrossRefGoogle Scholar
  17. [17]
    Cirera, B.; Zhang, Y.-Q.; Björk, J.; Klyatskaya, S.; Chen, Z.; Ruben, M.; Barth, J. V.; Klappenberger, F. Synthesis of extended graphdiyne wires by vicinal surface templating. Nano Lett. 2014, 14, 1891–1897.CrossRefGoogle Scholar
  18. [18]
    Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.CrossRefGoogle Scholar
  19. [19]
    Li, G. X.; Li, Y. L.; Qian, X. M.; Liu, H. B.; Lin, H. W.; Chen, N.; Li, Y. J. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 2011, 115, 2611–2615.CrossRefGoogle Scholar
  20. [20]
    Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling Reaction. J. Am. Chem. Soc. 2015, 137, 7596–7599.CrossRefGoogle Scholar
  21. [21]
    Gao, X.; Zhou, J. Y.; Du, R.; Xie, Z. Q.; Deng, S. B.; Liu, R.; Liu, Z. F.; Zhang, J. Robust superhydrophobic foam: A graphdiyne-based hierarchical architecture for oil/water separation. Adv. Mater. 2016, 28, 168–173.CrossRefGoogle Scholar
  22. [22]
    Zheng, J. J.; Zhao, X.; Zhao, Y.; Gao, X. Two-dimensional carbon compounds derived from graphyne with chemical properties superior to those of graphene. Sci. Rep. 2013, 3, 1271.CrossRefGoogle Scholar
  23. [23]
    Huang, H. Q.; Duan, W. H.; Liu, Z. R. The existence/absence of Dirac cones in graphynes. New J. Phys. 2013, 15, 023004.CrossRefGoogle Scholar
  24. [24]
    Li, Z. Z.; Wang, J. Y.; Liu, Z. R. Intrinsic carrier mobility of Dirac cones: The limitations of deformation potential theory. J. Chem. Phys. 2014, 141, 144107.CrossRefGoogle Scholar
  25. [25]
    Chen, J. M.; Xi, J. Y.; Wang, D.; Shuai, Z. G. Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction. J. Phys. Chem. Lett. 2013, 4, 1443–1448.CrossRefGoogle Scholar
  26. [26]
    Ouyang, T.; Hu, M. Thermal transport and thermoelectric properties of beta-graphyne nanostructures. Nanotechnology 2014, 25, 245401.CrossRefGoogle Scholar
  27. [27]
    Bardeen, J.; Shockley, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 1950, 80, 72–80.CrossRefGoogle Scholar
  28. [28]
    Li, Y.; Jiang, X. W.; Liu, Z. F.; Liu, Z. R. Strain effects in graphene and graphene nanoribbons: The underlying mechanism. Nano Res. 2010, 3, 545–556.CrossRefGoogle Scholar
  29. [29]
    Yang, L.; Han, J. Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 2000, 85, 154–157.CrossRefGoogle Scholar
  30. [30]
    Mohr, M.; Papagelis, K.; Maultzsch, J.; Thomsen, C. Twodimensional electronic and vibrational band structure of uniaxially strained graphene from ab initio calculations. Phys. Rev. B 2009, 80, 205410.CrossRefGoogle Scholar
  31. [31]
    Vozmediano, M. A. H.; Katsnelson, M. I.; Guinea, F. Gauge fields in graphene. Phys. Rep. 2010, 496, 109–148.CrossRefGoogle Scholar
  32. [32]
    Pereira, V. M.; Castro Neto, A. H. Strain engineering of graphene’s electronic structure. Phys. Rev. Lett. 2009, 103, 046801.CrossRefGoogle Scholar
  33. [33]
    Pereira, V. M.; Castro Neto, A. H.; Peres, N. M. R. Tightbinding approach to uniaxial strain in graphene. Phys. Rev. B 2009, 80, 045401.CrossRefGoogle Scholar
  34. [34]
    Farjam, M.; Rafii-Tabar, H. Uniaxial strain on gapped graphene. Phys. E 2010, 42, 2109–2114.CrossRefGoogle Scholar
  35. [35]
    Wang, J. Y.; Zhao, R. Q.; Yang, M. M.; Liu, Z. F.; Liu, Z. R. Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 2013, 138, 084701.CrossRefGoogle Scholar
  36. [36]
    Montambaux, G.; Piéchon, F.; Fuchs, J. N.; Goerbig, M. O. Merging of Dirac points in a two-dimensional crystal. Phys. Rev. B 2009, 80, 153412.CrossRefGoogle Scholar
  37. [37]
    Dvorak, M.; Wu, Z. G. Dirac point movement and topological phase transition in patterned graphene. Nanoscale 2015, 7, 3645–3650.CrossRefGoogle Scholar
  38. [38]
    Zhu, S.-L.; Wang, B. G.; Duan, L. M. Simulation and detection of Dirac fermions with cold atoms in an optical lattice. Phys. Rev. Lett. 2007, 98, 260402.CrossRefGoogle Scholar
  39. [39]
    Wunsch, B.; Guinea, F.; Sols, F. Dirac-point engineering and topological phase transitions in honeycomb optical lattices. New J. Phy. 2008, 10, 103027.CrossRefGoogle Scholar
  40. [40]
    Tarruell, L.; Greif, D.; Uehlinger, T.; Jotzu, G.; Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 2012, 483, 302–305.CrossRefGoogle Scholar
  41. [41]
    Hasegawa, Y.; Kishigi, K. Merging Dirac points and topological phase transitions in the tight-binding model on the generalized honeycomb lattice. Phys. Rev. B 2012, 86, 165430.CrossRefGoogle Scholar
  42. [42]
    Wang, L.; Fu, L. B. Interaction-induced merging of Dirac points in non-Abelian optical lattices. Phys. Rev. A 2013, 87, 053612.CrossRefGoogle Scholar
  43. [43]
    Ibañez-Azpiroz, J.; Eiguren, A.; Bergara, A.; Pettini, G.; Modugno, M. Self-consistent tight-binding description of Dirac points moving and merging in two-dimensional optical lattices. Phys. Rev. A 2013, 88, 033631.CrossRefGoogle Scholar
  44. [44]
    Wu, C. J.; Bergman, D.; Balents, L.; Das Sarma, S. Flat bands and wigner crystallization in the honeycomb optical lattice. Phys. Rev. Lett. 2007, 99, 070401.CrossRefGoogle Scholar
  45. [45]
    Yue, Q.; Chang, S. L.; Kang, J.; Qin, S. Q.; Li, J. B. Mechanical and electronic properties of graphyne and its family under elastic strain: Theoretical predictions. J. Phys. Chem. C 2013, 117, 14804–14811.CrossRefGoogle Scholar
  46. [46]
    Zhang, S. Q.; Wang, J. Y.; Li, Z. Z.; Zhao, R. Q.; Tong, L. M.; Liu, Z. F.; Zhang, J.; Liu, Z. R. Raman spectra and corresponding strain effects in graphyne and graphdiyne. J. Phys. Chem. C 2016, 120, 10605–10613.CrossRefGoogle Scholar
  47. [47]
    Lin, Z. R.; Liu, Z. R. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry. J. Chem. Phys. 2015, 143, 214109.CrossRefGoogle Scholar
  48. [48]
    Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  49. [49]
    Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab inito total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  50. [50]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.CrossRefGoogle Scholar
  51. [51]
    Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.CrossRefGoogle Scholar
  52. [52]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  53. [53]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  54. [54]
    Cranford, S. W.; Buehler, M. J. Mechanical properties of graphyne. Carbon 2011, 49, 4111–4121.CrossRefGoogle Scholar
  55. [55]
    Peng, Q.; Ji, W.; De, S. Mechanical properties of graphyne monolayers: A first-principles study. Phys. Chem. Chem. Phys. 2012, 14, 13385–13391.CrossRefGoogle Scholar
  56. [56]
    Yang, Y. L.; Xu, X. M. Mechanical properties of graphyne and its family–A molecular dynamics investigation. Comput. Mater. Sci. 2012, 61, 83–88.CrossRefGoogle Scholar
  57. [57]
    Zhang, Y. Y.; Pei, Q. X.; Wang, C. M. Mechanical properties of graphynes under tension: A molecular dynamics study. Appl. Phys. Lett. 2012, 101, 081909.CrossRefGoogle Scholar
  58. [58]
    Couto, R.; Silvestre, N. Finite element modelling and mechanical characterization of graphyne. J. Nanomater. 2016, 2016, Article ID 7487049.Google Scholar
  59. [59]
    Cranford, S. W.; Brommer, D. B.; Buehler, M. J. Extended graphynes: Simple scaling laws for stiffness, strength and fracture. Nanoscale 2012, 4, 7797–7809.CrossRefGoogle Scholar
  60. [60]
    Liu, M. J.; Artyukhov, V. I.; Lee, H.; Xu, F. B.; Yakobson, B. I. Carbyne from first principles: Chain of C atoms, a nanorod or a nanorope. ACS Nano 2013, 7, 10075–10082.CrossRefGoogle Scholar
  61. [61]
    Gui, G.; Li, J.; Zhong, J. X. Band structure engineering of graphene by strain: First-principles calculations. Phys. Rev. B 2008, 78, 075435.CrossRefGoogle Scholar
  62. [62]
    Kim, B. G.; Choi, H. J. Graphyne: Hexagonal network of carbon with versatile Dirac cones. Phys. Rev. B 2012, 86, 115435.CrossRefGoogle Scholar
  63. [63]
    van Miert, G.; Juričić, V.; Smith, C. M. Tight-binding theory of spin-orbit coupling in graphynes. Phys. Rev. B 2014, 90, 195414.CrossRefGoogle Scholar
  64. [64]
    Kang, J.; Li, J. B.; Wu, F. M.; Li, S.-S.; Xia, J.-B. Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J. Phys. Chem. C 2011, 115, 20466–20470.CrossRefGoogle Scholar
  65. [65]
    Lang, H. F.; Zhang, S. Q.; Liu, Z. R. Mobility anisotropy of two-dimensional semiconductors. Phys. Rev. B 2016, 94, 235306.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Chemistry and Molecular Engineering, Center for Nanochemistry, State Key Laboratory for Structure Chemistry of Unstable and Stable Species, and Beijing National Laboratory for Molecular Sciences (BNLMS)Peking UniversityBeijingChina

Personalised recommendations