Skip to main content
Log in

Band-Gap Modulation of GeCH3 Nanoribbons Under Elastic Strain: A Density Functional Theory Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using the density functional theory method, we researched the band-gap modulation of GeCH3 nanoribbons under uniaxial elastic strain. The results indicated that the band gap of GeCH3 nanoribbons could be tuned along two directions, namely, stretching or compressing ribbons when ɛ was changed from −10% to 10% in 6-zigzag, 10-zigzag, 13-armchair, and 17-armchair nanoribbons, respectively. The band gap greatly changed with strain. In the case of tension, the amount of change in the band gap was bigger. But in the case of compression, the gradient was steeper. The band gap had a nearly linear relationship when ɛ ranges from 0% to 10%. We also investigated if the band gap is changed with widths. The results showed variation of the band gap did not rely on widths. Therefore, the GeCH3 nanoribbons had the greatest potential application in strain sensors and optical electronics at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Xu, T. Liang, M.M. Shi, and H.Z. Chen, Chem. Rev. 113, 3766 (2013).

    Article  Google Scholar 

  2. S. Mao, S.M. Cui, G.H. Lu, K.H. Yu, Z.H. Wen, and J.H. Chen, J. Mater. Chem. 22, 11009 (2012).

    Article  Google Scholar 

  3. T. Zhang, Q.Z. Xue, S. Zhang, and M.D. Dong, Nano Today 7, 180 (2012).

    Article  Google Scholar 

  4. A.K. Geim, Science 324, 1530 (2009).

    Article  Google Scholar 

  5. E. Bianco, S. Butler, S. Jiang, O.D. Restrepo, W. Windl, and J.E. Goldberger, ACS Nano 7, 4414 (2013).

    Article  Google Scholar 

  6. L. Hu, J. Zhao, and J.L. Yang, J. Phys. 26, 335302 (2014).

    Google Scholar 

  7. Z.H. Liu, Z.Z. Lou, Z.J. Li, G. Wang, Z.Y. Wang, Y.Y. Liu, B.B. Huang, S.Q. Xia, X.Y. Qin, X.Y. Zhang, and Y. Dai, Chem. Commun. 50, 11046 (2014).

    Article  Google Scholar 

  8. T.Y. Du, J. Zhao, G. Liu, J.X. Le, and B. Xu, Mod. Phys. Lett. B 28, 1450138 (2014).

    Article  Google Scholar 

  9. R.K. Ghosh, M. Brahma, and S. Mahapatra, IEEE Trans Electron Dev 61, 2309 (2014).

    Article  Google Scholar 

  10. S.S. Jiang, E. Bianco, and J.E. Goldberger, J. Mater. Chem. C 2, 3185 (2014).

    Article  Google Scholar 

  11. Y.F. Li and Z.F. Chen, J. Phys. Chem. C 118, 1148 (2014).

    Article  Google Scholar 

  12. Y.D. Ma, Y. Dai, Y.B. Lu, and B.B. Huang, J. Mater. Chem. C 2, 1125 (2014).

    Article  Google Scholar 

  13. Y.G. Zhou, X.M. Li, Z.G. Wang, S. Li, and X.T. Zu, Phys. Chem. Chem. Phys. 16, 18029 (2014).

    Article  Google Scholar 

  14. O.D. Restrepo, K.E. Krymowski, J. Goldberger, and W. Windl, New J. Phys. 16, 105009 (2014).

    Article  Google Scholar 

  15. S.S. Jiang, S. Butler, E. Bianco, O.D. Restrepo, W. Windl, and J.E. Goldberger, Nat. Commun 5, 3389 (2014).

    Google Scholar 

  16. Y.D. Ma, Y. Dai, W. Wei, B.B. Huang, and M.-H. Whangbo, Sci. Rep. 4, 7297 (2014).

    Article  Google Scholar 

  17. J.J. Palacios, J. Fernández-Rossier, L. Brey, and H.A. Fertig, Semicond. Sci. Technol. 25, 033003 (2010).

    Article  Google Scholar 

  18. O.V. Yazyev, Chem. Res. 46, 2319 (2013).

    Article  Google Scholar 

  19. M.V. Fischetti, J. Kim, S. Narayanan, Z.Y. Ong, C. Sachs, D.K. Ferry, and S.J. Aboud, J. Phys. 25, 473202 (2013).

    Google Scholar 

  20. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).

    Article  Google Scholar 

  21. Y.W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  22. Z. Wang, Q. Li, H. Zheng, H. Ren, H. Su, Q.W. Shi, and J. Chen, Phys. Rev. B 75, 113406 (2007).

    Article  Google Scholar 

  23. O. Hod, V. Barone, J.E. Peralta, and G.E. Scueria, Nano Lett. 7, 2295 (2007).

    Article  Google Scholar 

  24. D. Gunlycke, J. Li, J.W. Mintmire, and C.T. White, Appl. Phys. Lett. 91, 112108 (2007).

    Article  Google Scholar 

  25. E.J. Kan, H.J. Xiang, J.L. Yang, and J.G. Hou, J. Chem. Phys. 127, 164706 (2007).

    Article  Google Scholar 

  26. E.J. Kan, Z.Y. Li, J.L. Yang, and J.G. Hou, J. Am. Chem. Soc. 130, 4224 (2008).

    Article  Google Scholar 

  27. F. Cervantes-Sodi, G. Csányi, S. Piscanec, and A.C. Ferrari, Phys. Rev. B 77, 165427 (2008).

    Article  Google Scholar 

  28. Z. Li, H. Qian, J. Wu, B.-L. Gu, and W. Duan, Phys. Rev. Lett. 100, 206802 (2008).

    Article  Google Scholar 

  29. Y. Zhang, X.J. Wu, Q.X. Li, and J.L. Yang, J. Phys. Chem. C 116, 9356 (2012).

    Article  Google Scholar 

  30. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  Google Scholar 

  31. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  Google Scholar 

  32. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  33. S. Grimme, J. Comput. Chem. 27, 1787 (2007).

    Article  Google Scholar 

  34. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  35. L. Hu, J. Zhao, and J.L. Yang, J. Phys.: Condens. Matter 26, 335302 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShengQian Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Li, F. & Jiang, C. Band-Gap Modulation of GeCH3 Nanoribbons Under Elastic Strain: A Density Functional Theory Study. J. Electron. Mater. 45, 5412–5417 (2016). https://doi.org/10.1007/s11664-016-4687-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4687-y

Keywords

Navigation