Skip to main content
Log in

Synthesis of Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles for advanced lithium-ion battery anode materials

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We synthesized Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles via an easy and scalable solution synthesis. The synthesized Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles were annealed to remove the organic surfactants without phase transitions or side reactions. Electrons can be transferred via metallic Cu3.8Ni, which will not react with lithium ions. The heterogeneous structures of Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles could enhance the lithium ion mobility and improve the life cycle, and these materials are therefore promising candidates as high-power-density and high-energy-density anode materials for lithium-ion batteries in diverse applications, such as electrical vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

    Article  Google Scholar 

  2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  3. Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613.

    Article  Google Scholar 

  4. Binotto, G.; Larcher, D.; Prakash, A. S.; Urbina, R. H.; Hegde, M. S.; Tarascon, J. M. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem. Mater. 2007, 19, 3032–3040.

    Article  Google Scholar 

  5. Gao, J.; Lowe, M. A.; Abruña, H. D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater. 2011, 23, 3223–3227.

    Article  Google Scholar 

  6. Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 13826–13831.

    Article  Google Scholar 

  7. Sharma, N.; Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R. Mixed oxides Ca2Fe2O5 and Ca2Co2O5 as anode materials for Li-ion batteries. Electrochim. Acta 2004, 49, 1035–1043.

    Article  Google Scholar 

  8. Hu, J.; Li, H.; Huang, X. J.; Chen, L. Q. Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ionics 2006, 177, 2791–2799.

    Article  Google Scholar 

  9. Zhong, K. F.; Xia, X.; Zhang, B.; Li, H.; Wang, Z. X.; Chen, L. Q. MnO powder as anode active materials for lithium ion batteries. J. Power Sources 2010, 195, 3300–3308.

    Article  Google Scholar 

  10. Lee, J.; Zhu, H. Z.; Yadav, G. G.; Caruthers, J.; Wu, Y. Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res. 2016, 9, 996–1004.

    Article  Google Scholar 

  11. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  Google Scholar 

  12. Liu, H.; Wang, G. X.; Liu, J.; Qiao, S. Z.; Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 2011, 21, 3046–3052.

    Article  Google Scholar 

  13. Wen, Z. H.; Wang, Q.; Zhang, Q.; Li, J. H. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772–2778.

    Article  Google Scholar 

  14. Yang, Y.; Liang, Q. Q.; Li, J. H.; Zhuang, Y.; He, Y. H.; Bai, B.; Wang, X. Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Res. 2011, 4, 882–890.

    Article  Google Scholar 

  15. Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 2003, 150, A133–A139.

    Article  Google Scholar 

  16. Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

    Article  Google Scholar 

  17. Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 2010, 114, 21770–21774.

    Article  Google Scholar 

  18. Greiner, M. T.; Helander, M. G.; Tang, W. M.; Wang, Z. B.; Qiu, J.; Lu, Z. H. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 2012, 11, 76–81.

    Article  Google Scholar 

  19. Rao, C. N. R.; Rao, G. V. S. Electrical conduction in metal oxides. Phys. Status Solidi A 1970, 1, 597–652.

    Article  Google Scholar 

  20. Kim, M. G.; Sim, S.; Cho, J. Novel core-shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redoxtransmetalation reaction. Adv. Mater. 2010, 22, 5154–5158.

    Article  Google Scholar 

  21. Lee, H.; Cho, J. Sn78Ge22@carbon core–shell nanowires as fast and high-capacity lithium storage media. Nano Lett. 2007, 7, 2638–2641.

    Article  Google Scholar 

  22. Su, L. W.; Jing, Y.; Zhou, Z. Li ion battery materials with core–shell nanostructures. Nanoscale 2011, 3, 3967–3983.

    Article  Google Scholar 

  23. Liu, Y. M.; Zhao, X. Y.; Li, F.; Xia, D. G. Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta 2011, 56, 6448–6452.

    Article  Google Scholar 

  24. Yuan, W. W.; Zhang, J.; Xie, D.; Dong, Z. M.; Su, Q. M.; Du, G. H. Porous CoO/C polyhedra as anode material for Li-ion batteries. Electrochim. Acta 2013, 108, 506–511.

    Article  Google Scholar 

  25. Fransson, L.; Eriksson, T.; Edström, K.; Gustafsson, T.; Thomas, J. O. Influence of carbon black and binder on Li-ion batteries. J. Power Sources 2001, 101, 1–9.

    Article  Google Scholar 

  26. Electrical resistivity and conductivity [Online]. Wikipedia, 2016; https://en.wikipedia.org/wiki/Electrical_resistivity_ and_conductivity#cite_note-Giancoli-20 (accessed Aug 20, 2016).

  27. Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567–573.

    Article  Google Scholar 

  28. Standard electrode potential (data page) [Online]. Wikipedia, 2016; https://en.wikipedia.org/wiki/Standard_electrode_ potential_(data_page) (accessed Aug 20, 2016).

  29. Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

    Article  Google Scholar 

  30. Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

    Article  Google Scholar 

  31. Zhang, Y. W.; Huang, W. Y.; Habas, S. E.; Kuhn, J. N.; Grass, M. E.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Nearmonodisperse Ni-Cu bimetallic nanocrystals of variable composition: Controlled synthesis and catalytic activity for H2 generation. J. Phys. Chem. C 2008, 112, 12092–12095.

    Article  Google Scholar 

  32. Oliveira, F. C. C.; Effenberger, F. B.; Sousa, M. H.; Jardim, R. F.; Kiyohara, P. K.; Dupont, J.; Rubim, J. C.; Rossi, L. M. Ionic liquids as recycling solvents for the synthesis of magnetic nanoparticles. Phys. Chem. Chem. Phys. 2011, 13, 13558–13564.

    Article  Google Scholar 

  33. Li, X.; Tang, A. W.; Li, J. T.; Guan, L.; Dong, G. Y.; Teng, F. Heating-up synthesis of MoS2 nanosheets and their electrical bistability performance. Nanoscale Res. Lett. 2016, 11, 171.

    Article  Google Scholar 

  34. Vijayaraghavan, B.; Ely, D. R.; Chiang, Y. M.; García-García, R.; García, R. E. An analytical method to determine tortuosity in rechargeable battery electrodes. J. Electrochem. Soc. 2012, 159, A548–A552.

    Article  Google Scholar 

  35. Zheng, X. F.; Shen, G. F.; Li, Y.; Duan, H. N.; Yang, X. Y.; Huang, S. Z.; Wang, H. G.; Wang, C.; Deng, Z.; Su, B.-L. Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. J. Mater. Chem. A 2013, 1, 1394–1400.

    Article  Google Scholar 

  36. Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources 2013, 238, 376–387.

    Article  Google Scholar 

  37. Fernández-García, M.; Rodriguez, J. A. Metal oxide nanoparticles. In Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: New York, 2011.

    Google Scholar 

  38. Guo, D.; Xie, G. X.; Luo, J. B. Mechanical properties of nanoparticles: Basics and applications. J. Phys. D: Appl. Phys. 2014, 47, 013001.

    Article  Google Scholar 

  39. He, J. B.; Kanjanaboos, P.; Frazer, N. L.; Weis, A.; Lin, X. M.; Jaeger, H. M. Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 2010, 6, 1449–1456.

    Article  Google Scholar 

  40. Liu, J. F.; He, Y.; Chen, W.; Zhang, G. Q.; Zeng, Y. W.; Kikegawa, T.; Jiang, J. Z. Bulk modulus and structural phase transitions of wurtzite CoO nanocrystals. J. Phys. Chem. C 2007, 111, 2–5.

    Article  Google Scholar 

Download references

Acknowledgements

Y. W. acknowledges the support from Iowa State University and the support from The Eastern Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Zhu, H., Deng, W. et al. Synthesis of Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles for advanced lithium-ion battery anode materials. Nano Res. 10, 1033–1043 (2017). https://doi.org/10.1007/s12274-016-1363-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1363-8

Keywords

Navigation