Skip to main content
Log in

Synthesis of CuCo2O4 nanoparticles as an anode material with high performance for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, the binary metal oxides (BMOs) have become a hot spot with remarkable electrochemical performance for lithium-ion batteries. In this work, the CuCo2O4 nanoparticles were successfully synthesized by a facile scalable solvothermal post-calcination method with the assistance urea as organic ligands and N,N-dimethylformamide (DMF) as the solvent. The porous precursor played a vital role as a template to form the CuCo2O4 nanoparticles, greatly enhancing the electrochemical performance of final products. When used as anode materials for lithium-ion batteries, the CuCo2O4 nanoparticles exhibited remarkable reversible specific capacity (1106.8 mAh g−1) and coulombic efficiency (99.8%) at 0.5 C over 300 cycles, capacity retention reached 84.5%. This excellent performance can be attributed to the porous morphology of precursor and the uniform nanostructure of the products. The CuCo2O4 nanoparticles also displayed remarkable rate capability, even at the 2C of current density; the charge capacity of the CuCo2O4 nanoparticles is 799.8 mAh g−1 with a coulombic efficiency of 98.4%. The excellent electrochemical performance makes the CuCo2O4 nanoparticles a aussichtsreich anode material for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Could be available if required.

References

  1. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    CAS  Google Scholar 

  2. F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23(15), 1695–1715 (2011)

    Article  CAS  Google Scholar 

  3. C.X. Shen, R.S. Fu, H.C. Guo, Y.K. Wu, C.Z. Fan, Y.G. Xia, Z.P. Liu, Scalable synthesis of Si nanowires interconnected SiOx anode for high performance lithium-ion batteries. J. Alloys Compd. 783, 128–135 (2019)

    Article  CAS  Google Scholar 

  4. J.F. Li, S.L. Xiong, X.W. Li, Y.T. Qian, A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5(5), 2045–2054 (2013)

    Article  CAS  Google Scholar 

  5. Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 17(15), 2855–2861 (2007)

    Article  CAS  Google Scholar 

  6. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sizedtransition-metaloxidesas negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    Article  CAS  Google Scholar 

  7. C.X. Shen, R.S. Fu, Y.G. Xia, Z.P. Liu, New perspective to understand the effect of electrochemical prelithiation behaviors on silicon monoxide. Rsc. Adv. 8(26), 14473–14478 (2018)

    Article  CAS  Google Scholar 

  8. D.L. Wang, Y.C. Yu, H. He, J. Wang, W.D. Zhou, H.D. Abruna, Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9(2), 1775–1781 (2015)

    Article  CAS  Google Scholar 

  9. Q. Gao, J.X. Wang, J.F. Wang, Morphology-controllable synthesis of CuCo2O4 arrays on Ni foam as advanced electrodes for supercapacitors. J. Alloys Compd. 789, 193–200 (2019)

    Article  CAS  Google Scholar 

  10. L. Lu, F.X. Min, Z.H. Luo, S.Q. Wang, F. Teng, G.H. Li, C.Q. Feng, Synthesis and electrochemical properties of CuCo2O4 as anode material for lithium-lon battery. J. Nanosci. Nanotechnol. 17(7), 4763–4771 (2017)

    Article  CAS  Google Scholar 

  11. C. Xu, C. Jin, W. Chang, X. Hu, H. Deng, E. Liu, J. Fan, Interfacially bonded CuCo2O4/TiO2 nanosheet heterostructures for boosting photocatalytic H2 production. Catal. Sci. Technol. 9(18), 4990–5000 (2019)

    Article  CAS  Google Scholar 

  12. J. Li, Y.X. Zhang, L. Li, L.X. Cheng, S. Dai, F. Wang, Y.M. Wang, X.Y. Yu, Formation of highly porous CuCo2O4 nanosheet assemblies for high-rate and long-term lithium storage. Sustain. Energy Fuels 3(12), 3370–3374 (2019)

    Article  CAS  Google Scholar 

  13. G.Q. Zhang, B.Y. Xia, C. Xiao, L. Yu, X. Wang, Y. Xie, X.W.D. Lou, General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 52(33), 8643–8647 (2013)

    Article  CAS  Google Scholar 

  14. J. Shao, Z.M. Wan, H.M. Liu, H.Y. Zheng, T. Gao, M. Shen, Q.T. Qu, H.H. Zheng, Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J. Mater. Chem. A 2(31), 12194–12200 (2014)

    Article  CAS  Google Scholar 

  15. L. Wei, L. Li, T. Zhao, N.X. Zhang, Y.Y. Zhao, F. Wu, R.J. Chen, MOF-derived lithiophilic CuO nanorod arrays for stable lithium metal anodes. Nanoscale 12(17), 9416–9422 (2020)

    Article  CAS  Google Scholar 

  16. Z.C. Bai, Y.H. Zhang, Y.W. Zhang, C.L. Guo, B. Tang, D. Sun, MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery. J. Mater. Chem. A 3(10), 5266–5269 (2015)

    Article  CAS  Google Scholar 

  17. X. Yang, Y.B. Tang, X. Huang, H.T. Xue, W.P. Kang, W.Y. Li, T.W. Ng, C.S. Lee, Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks. J. Power Sources 284, 109–114 (2015)

    Article  CAS  Google Scholar 

  18. S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, C.R. Park, Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J. Am. Chem. Soc. 135(20), 7394–7397 (2013)

    Article  CAS  Google Scholar 

  19. T.Q. Liu, W.Q. Wang, M.J. Yi, Q.D. Chen, C. Xu, D.P. Cai, H.B. Zhan, Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem. Eng. J. 354, 454–462 (2018)

    Article  CAS  Google Scholar 

  20. X. Zhang, Y.P. Zhou, B. Luo, H.C. Zhu, W. Chu, K.M. Huang, Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries. Nanomicro Lett. 10(1), 13 (2018)

    Google Scholar 

  21. J. Zhao, F.Q. Wang, P.P. Su, M.R. Li, J. Chen, Q.H. Yang, C. Li, Spinel ZnMn2O4 nanoplate assemblies fabricated via “escape-by-crafty-scheme” strategy. J. Mater. Chem. 22(26), 13328–13333 (2012)

    Article  CAS  Google Scholar 

  22. P.X. Wang, L. Shao, N.Q. Zhang, K.N. Sun, Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries. J. Power Sources 325, 506–512 (2016)

    Article  CAS  Google Scholar 

  23. M. Bhardwaj, A. Patrike, R. Naphade, S. Tonda, Y.P. Gawli, S. Ogale, Porous CuCo2O4 nanotubules for Li-ion battery anode. ChemistrySelect 2(10), 2922–2926 (2017)

    Article  CAS  Google Scholar 

  24. A.T.A. Ahmed, B. Hou, H.S. Chavan, Y. Jo, S. Cho, J. Kim, S.M. Pawar, S.N. Cha, A.I. Inamdar, H. Kim, H. Im, Self-assembled nanostructured CuCo2O4 for electrochemical energy storage and the oxygen evolution reaction via morphology engineering. Small 14(28), e1800742 (2018)

    Article  CAS  Google Scholar 

  25. S.B. Cai, G. Wang, M. Jiang, H. Wang, Template-free fabrication of porous CuCo2O4 hollow spheres and their application in lithium ion batteries. J. Solid. State. Electrochem. 21(4), 1129–1136 (2016)

    Article  CAS  Google Scholar 

  26. M. Bhardwaj, A. Suryawanshi, R. Fernandes, S. Tonda, A. Banerjee, D. Kothari, S. Ogale, CuCo2O4 nanowall morphology as Li-ion battery anode: enhancing electrochemical performance through stoichiometry control. Mater. Res. Bull. 90, 303–310 (2017)

    Article  CAS  Google Scholar 

  27. S. Liu, S.C. Zhang, Y.L. Xing, S.B. Wang, R.X. Lin, X. Wei, L. He, Facile synthesis of hierarchical mesoporous CuxCo3-xO4 nanosheets array on conductive substrates with high-rate performance for Li-ion batteries. Electrochim. Acta. 150, 75–82 (2014)

    Article  CAS  Google Scholar 

  28. F.E. Niu, N.N. Wang, J. Yue, L. Chen, J. Yang, Y.T. Qian, Hierarchically porous CuCo2O4 microflowers: a superior anode material for Li-ion batteries and a stable cathode electrocatalyst for Li-O2 batteries. Electrochim. Acta 208, 148–155 (2016)

    Article  CAS  Google Scholar 

  29. H.M. Xu, X.L. Song, Y. Zhang, Z.Z. Qin, T. Ma, H. Wang, Facile preparation of porous erythrocyte-like CuCo2O4 as active material of lithium ion batteries anode. J. Mater. Sci. Mater. Electron. 30(17), 16308–16315 (2019)

    Article  CAS  Google Scholar 

  30. J.J. Ma, H.J. Wang, X. Yang, Y.Q. Chai, R.Y. Yuan, Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal–organic frameworks as anodes for lithium-ion batteries. J. Mater. Chem. A 3(22), 12038–12043 (2015)

    Article  CAS  Google Scholar 

  31. W.W. Lei, L.Y. Nie, S. Liu, Y. Zhuo, R.Y. Yuan, Influence of annealing temperature on microstructure and lithium storage performance of self-templated CuxCo3−xO4 hollow microspheres. Rsc. Adv. 6(67), 62640–62646 (2016)

    Article  CAS  Google Scholar 

  32. S.Y. Zhen, H.T. Wu, Y. Wang, N. Li, H.S. Chen, W.L. Song, Z.H. Wang, W. Sun, K.N. Sun, Metal–organic framework derived hollow porous CuO–CuCo2O4 dodecahedrons as a cathode catalyst for Li–O2 batteries. Rsc. Adv. 9(29), 16288–16295 (2019)

    Article  CAS  Google Scholar 

  33. R.H. Zhang, T.S. Zhao, H.R. Jiang, M.C. Wu, L. Zeng, V2O5-NiO composite nanowires: a novel and highly efficient carbon-free electrode for non-aqueous Li-air batteries operated in ambient air. J. Power Sources 409, 76–85 (2019)

    Article  CAS  Google Scholar 

  34. J.S. Wang, Y.Z. Liu, N. Li, F.F. Qin, F.F. Xu, W. Shi, H.Y. Li, W.Z. Shen, Petal-like N, O-codoped carbon nanosheets as Mott-Schottky nanoreactors in electrodes of Zn-Air batteries and supercapacitors. Carbon 178, 581–593 (2021)

    Article  CAS  Google Scholar 

  35. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46(11), 17186–17196 (2020)

    Article  CAS  Google Scholar 

  36. L.W. Su, J. Zhan, Q.H. Gu, H. Chen, L.L. Wang, Y.H. Wang, Q. Hu, M.M. Ren, N-doped carbon nanolayer modified nickel foam: a novel substrate for supercapacitors. Appl. Surf. Sci. 546, 148754 (2021)

    Article  CAS  Google Scholar 

  37. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46(17), 26548–26556 (2020)

    Article  CAS  Google Scholar 

  38. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021)

    Article  CAS  Google Scholar 

  39. J.C. Lei, Q. Zhang, Z.Y. Zhao, Y.Z. Chen, J. Gao, J.H. Tong, F. Peng, H. Xiao, One-step fabrication of nanocrystalline nanonetwork SnO2 gas sensors by integrated multilaser processing. Adv. Mater. Technol. 5(8), 2000281 (2020)

    Article  CAS  Google Scholar 

  40. N. Abhiram, D. Thangaraju, R. Marnadu, V. Santhana, J. Chandrasekaran, S. Gunasekaran, T. Alshahrani, H.E. Ali, M. Shkir, N.S.M.P.L. Devi, Fabrication of NiS decorated hollow SnS nano-belts based photodiode for enhanced optoelectronic applications. J. Nanopart. Res. 23(4), 83 (2021)

    Article  CAS  Google Scholar 

  41. S.J. Shen, L.H. Yan, K. Song, Z.P. Lin, Z.P. Wang, D.M. Du, H.H. Zhang, NiSe2/CdS composite nanoflakes photocatalyst with enhanced activity under visible light. Rsc. Adv. 10(69), 42008–42013 (2020)

    Article  CAS  Google Scholar 

  42. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of nanocrystalline praseodymium oxide via a simple precipitation approach. J. Mater. Sci. Mater. Electron. 26(8), 5812–5821 (2015)

    Article  CAS  Google Scholar 

  43. S. Chandramouleeswaran, S.T. Mhaske, A.A. Kathe, P.V. Varadarajan, V. Prasad, N. Vigneshwaran, Functional behaviour of polypropylene/ZnO–soluble starch nanocomposites. Nanotechnology 18(38), 385702 (2007)

    Article  CAS  Google Scholar 

  44. C.X. Cheng, F. Chen, J. Wang, G.S. Lai, H.Y. Yi, Synthesis of nano-CuCo2O4 with high electrochemical performance as anode material in lithium-ion batteries. J. Electron. Mater. 45(1), 553–556 (2015)

    Article  CAS  Google Scholar 

  45. W. Wang, Y. Yang, S.J. Yang, Z.P. Guo, C.Q. Feng, X.C. Tang, Synthesis and electrochemical performance of ZnCo2O4 for lithium-ion battery application. Electrochim. Acta 155, 297–304 (2015)

    Article  CAS  Google Scholar 

  46. S.F. Kang, X. Li, C.C. Yin, J.J. Wang, M.S. Aslam, H.Y. Qi, Y.F. Cao, J.T. Jin, L.F. Cui, Three-dimensional mesoporous sandwich-like g-C3N4-interconnected CuCo2O4 nanowires arrays as ultrastable anode for fast lithium storage. J. Colloid Interface Sci. 554, 269–277 (2019)

    Article  CAS  Google Scholar 

  47. S.M. Pawar, B.S. Pawar, B. Hou, A.T.A. Ahmed, H.S. Chavan, Y. Jo, S. Cho, J. Kim, J. Seo, S. Cha, A.I. Inamdar, H. Kim, H. Im, Facile electrodeposition of high-density CuCo2O4 nanosheets as a high-performance Li-ion battery anode material. J. Ind. Eng. Chem. 69, 13–17 (2019)

    Article  CAS  Google Scholar 

  48. A. Tomar, J. Singh, S.P. Singh, A.K. Rai, Designed synthesis of CuCo2O4/CuO nano-composite as a potential anode material for lithium ion batteries. Phys. E Low Dimens. Syst. Nanostruct. 116, 113736 (2020)

    Article  CAS  Google Scholar 

  49. W.P. Kang, Y.B. Tang, W.Y. Li, Z.P. Li, X. Yang, J. Xu, C.S. Lee, Porous CuCo2O4 nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes. Nanoscale 6(12), 6551–6556 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is grateful to the Natural Science Foundation of China (No.21373074) and Key R & D projects in Anhui Province (No. 202004a05020053). We thank the Instrumental Analysis Center of Hefei University of technology for materials characterization.

Funding

Natural Science Foundation of China (No. 21373074) and Key R & D projects in Anhui Province (No. 202004a05020053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-ping Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhu, Jp., Ding, Y. et al. Synthesis of CuCo2O4 nanoparticles as an anode material with high performance for lithium-ion batteries. J Mater Sci: Mater Electron 32, 18765–18776 (2021). https://doi.org/10.1007/s10854-021-06395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06395-3

Navigation