Skip to main content
Log in

Small-molecule diketopyrrolopyrrole-based therapeutic nanoparticles for photoacoustic imaging-guided photothermal therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Therapeutic nanoparticles (NPs) based on the donor–acceptor–donor structured small organic molecule diketopyrrolopyrrole (SDPP) were prepared using a simple reprecipitation approach. These near-infrared radiation-absorbing NPs have high photothermal conversion efficiency and are able to selectively target cancer tissues through the enhanced permeability and retention effect. Benefiting from these advantages, SDPP NPs can serve as an excellent therapeutic agent for highly efficient and noninvasive photoacoustic imaging-guided photothermal therapy. Experiments using mouse tumor models showed that the SDPP NPs exhibited exceptional tumor ablation ability under laser irradiation (660 nm, 1.0 W·cm‒2), even at a low dose (0.16 mg·kg‒1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Watersoluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687–4735.

    Article  Google Scholar 

  2. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

    Article  Google Scholar 

  3. Shi, S. X.; Chen, F.; Ehlerding, E. B.; Cai, W. B. Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjugate Chem. 2014, 25, 1609–1619.

    Article  Google Scholar 

  4. Cai, Y.; Tang, Q. Y.; Wu, X. J.; Si, W. L.; Zhang, Q.; Huang, W.; Dong, X. C. Bromo-substituted diketopyrrolopyrrole derivative with specific targeting and high efficiency for photodynamic therapy. ACS Appl. Mater. Interfaces 2016, 8, 10737–10742.

    Article  Google Scholar 

  5. Shi, H. X.; Sun, W. C.; Liu, C. B.; Gu, G. Y.; Ma, B.; Si, W. L.; Fu, N.; Zhang, Q.; Huang, W.; Dong, X. C. Tumortargeting, enzyme-activated nanoparticles for simultaneous cancer diagnosis and photodynamic therapy. J. Mater. Chem. B 2016, 4, 113–120.

    Article  Google Scholar 

  6. Huang, Y. J.; Hu, H.; Li, R. Q.; Yu, B. R.; Xu, F. J. Versatile types of MRI-visible cationic nanoparticles involving pullulan polysaccharides for multifunctional gene carriers. ACS Appl. Mater. Interfaces 2016, 8, 3919–3927.

    Article  Google Scholar 

  7. Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

    Article  Google Scholar 

  8. Huang, P.; Rong, P. F.; Lin, J.; Li, W. W.; Yan, X. F.; Zhang, M. G.; Nie, L. M.; Niu, G.; Lu, J.; Wang, W. et al. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. J. Am. Chem. Soc. 2014, 136, 8307–8313.

    Article  Google Scholar 

  9. Song, G. S.; Hao, J. L.; Liang, C.; Liu, T.; Gao, M.; Cheng, L.; Hu, J. Q.; Liu, Z. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angew. Chem., Int. Ed. 2016, 55, 2122–2126.

    Article  Google Scholar 

  10. Song, X. J.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015, 8, 340–354.

    Article  Google Scholar 

  11. Lokerse, W. J. M.; Kneepkens, E. C. M.; ten Hagen, T. L. M.; Eggermont, A. M. M.; Grüll, H.; Koning, G. A. In depth study on thermosensitive liposomes: Optimizing formulations for tumor specific therapy and in vitro to in vivo relations. Biomaterials 2016, 82, 138–150.

    Article  Google Scholar 

  12. Zhou, Z. G.; Sun, Y.; Shen, J. C.; Wei, J.; Yu, C.; Kong, B.; Liu, W.; Yang, H.; Yang, S. P.; Wang, W. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 2014, 35, 7470–7478.

    Article  Google Scholar 

  13. Yang, K.; Xu, H.; Cheng, L.; Sun, C. Y.; Wang, J.; Liu, Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 2012, 24, 5586–5592.

    Article  Google Scholar 

  14. Liu, Y. L.; Yang, M.; Zhang, J. P.; Zhi, X.; Li, C.; Zhang, C. L.; Pan, F.; Wang, K.; Yang, Y. M.; Martinez de la Fuentea, J. et al. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 2016, 10, 2375–2385.

    Article  Google Scholar 

  15. Huang, P.; Lin, J.; Wang, S. J.; Zhou, Z. J.; Li, Z. M.; Wang, Z.; Zhang, C. L.; Yue, X. Y.; Niu, G.; Yang, M. et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 2013, 34, 4643–4654.

    Article  Google Scholar 

  16. Li, W. W.; Rong, P. F.; Yang, K.; Huang, P.; Sun, K.; Chen, X. Y. Semimetal nanomaterials of antimony as highly efficient agent for photoacoustic imaging and photothermal therapy. Biomaterials 2015, 45, 18–26.

    Article  Google Scholar 

  17. Piao, J. G.; Liu, D.; Hu, K.; Wang, L. M.; Gao, F.; Xiong, Y. J.; Yang, L. H. Cooperative nanoparticle system for photothermal tumor treatment without skin damage. ACS Appl. Mater. Interfaces 2016, 8, 2847–2856.

    Article  Google Scholar 

  18. Gao, S.; Zhang, L. W.; Wang, G. H.; Yang, K.; Chen, M. L.; Tian, R.; Ma, Q. J.; Zhu, L. Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials 2016, 79, 36–45.

    Article  Google Scholar 

  19. Chen, D. Q.; Wang, C.; Nie, X.; Li, S. M.; Li, R. M.; Guan, M. R.; Liu, Z.; Chen, C. Y.; Wang, C. R.; Shu, C. Y. et al. Photoacoustic imaging guided near-infrared photothermal therapy using highly water-dispersible single-walled carbon nanohorns as theranostic agents. Adv. Funct. Mater. 2014, 24, 6621–6628.

    Article  Google Scholar 

  20. Chen, L.; Zhong, X. Y.; Yi, X.; Huang, M.; Ning, P.; Liu, T.; Ge, C. C.; Chai, Z. F.; Liu, Z.; Yang, K. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 2015, 66, 21–28.

    Article  Google Scholar 

  21. Wang, L.; Yang, P. P.; Zhao, X. X.; Wang, H. Self-assembled nanomaterials for photoacoustic imaging. Nanoscale 2016, 8, 2488–2509.

    Article  Google Scholar 

  22. Muhanna, N.; Jin, C. S.; Huynh, E.; Chan, H.; Qiu, Y.; Jiang, W. L.; Cui, L. Y.; Burgess, L.; Akens, M. K.; Chen, J. et al. Phototheranostic porphyrin nanoparticles enable visualization and targeted treatment of head and neck cancer in clinically relevant models. Theranostics 2015, 5, 1428–1443.

    Article  Google Scholar 

  23. Hu, Y.; Zhou, Y. Q.; Zhao, N. N.; Liu, F. S.; Xu, F. J. Multifunctional pDNA-conjugated polycationic Au nanorodcoated Fe3O4 hierarchical nanocomposites for trimodal imaging and combined photothermal/gene therapy. Small 2016, 12, 2459–2468.

    Article  Google Scholar 

  24. Zhao, N.; Li, J.; Zhou, Y. Q.; Hu, Y.; Wang, R. R.; Ji, Z. X.; Liu, F. S.; Xu, F.-J. Hierarchical nanohybrids of gold nanorods and PGMA-based polycations for multifunctional theranostics. Adv. Funct. Mater. 2016, 26, 5848–5861.

    Article  Google Scholar 

  25. Kaur, M.; Choi, D. H. Diketopyrrolopyrrole: Brilliant red pigment dye-based fluorescent probes and their applications. Chem. Soc. Rev. 2015, 44, 58–77.

    Article  Google Scholar 

  26. Bürckstummer, H.; Weissenstein, A.; Bialas, D.; Würthner, F. Synthesis and characterization of optical and redox properties of bithiophene-functionalized diketopyrrolopyrrole chromophores. J. Org. Chem. 2011, 76, 2426–2432.

    Article  Google Scholar 

  27. Yi, Z. R.; Wang, S.; Liu, Y. Q. Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors. Adv. Mater. 2015, 27, 3589–3606.

    Article  Google Scholar 

  28. Shen, X. Y.; Wang, Y. J.; Zhang, H. K.; Qin, A. J.; Sun, J. Z.; Tang, B. Z. Conjugates of tetraphenylethene and diketopyrrolopyrrole: Tuning the emission properties with phenyl bridges. Chem. Commun. 2014, 50, 8747–8750.

    Article  Google Scholar 

  29. Zhang, Y.; Kim, C.; Lin, J.; Nguyen, T.-Q. Solution-processed ambipolar field-effect transistor based on diketopyrrolopyrrole functionalized with benzothiadiazole. Adv. Funct. Mater. 2012, 22, 97–105.

    Article  Google Scholar 

  30. Zou, Y. P.; Gendron, D.; Neagu-Plesu, R.; Leclerc, M. Synthesis and characterization of new low-bandgap diketopyrrolopyrrole-based copolymers. Macromolecules 2009, 42, 6361–6365.

    Article  Google Scholar 

  31. Lan, M. H.; Zhang, J. F.; Zhu, X. Y.; Wang, P. F.; Chen, X. F.; Lee, C.-S.; Zhang, W. J. Highly stable organic fluorescent nanorods for living-cell imaging. Nano Res. 2015, 8, 2380–2389.

    Article  Google Scholar 

  32. Schmitt, J.; Heitz, V.; Sour, A.; Bolze, F.; Ftouni, H.; Nicoud, J. F.; Flamigni, L.; Ventura, B. Diketopyrrolopyrroleporphyrin conjugates with high two-photon absorption and singlet oxygen generation for two-photon photodynamic therapy. Angew. Chem., Int. Ed. 2015, 54, 169–173.

    Article  Google Scholar 

  33. Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S. Diketopyrrolopyrrolediketopyrrolopyrrole- based conjugated copolymer for highmobility organic field-effect transistors. J. Am. Chem. Soc. 2012, 134, 16532–16535.

    Article  Google Scholar 

  34. Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J. S.; Fréchet, J. M. J.; Toney, M. F. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 2005, 38, 3312–3319.

    Article  Google Scholar 

  35. Lee, O. P.; Yiu, A. T.; Beaujuge, P. M.; Woo, C. H.; Holcombe, T. W.; Millstone, J. E.; Douglas, J. D.; Chen, M. S.; Fréchet, J. M. J. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly. Adv. Mater. 2011, 23, 5359–5363.

    Article  Google Scholar 

  36. Jana, A.; Devi, K. S. P.; Maiti, T. K.; Singh, N. D. P. Perylene-3-ylmethanol: Fluorescent organic nanoparticles as a single-component photoresponsive nanocarrier with real-time monitoring of anticancer drug release. J. Am. Chem. Soc. 2012, 134, 7656–7659.

    Article  Google Scholar 

  37. Peng, H. S.; Chiu, D. T. Soft fluorescent nanomaterials for biological and biomedical imaging. Chem. Soc. Rev. 2015, 44, 4699–4722.

    Article  Google Scholar 

  38. Hauert, S.; Bhatia, S. N. Mechanisms of cooperation in cancer nanomedicine: Towards systems nanotechnology. Trends Biotechnol. 2014, 32, 448–455.

    Article  Google Scholar 

  39. Fan, Q. L.; Cheng, K.; Yang, Z.; Zhang, R. P.; Yang, M.; Hu, X.; Ma, X. W.; Bu, L. H.; Lu, X. M.; Xiong, X. X. et al. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv. Mater. 2015, 27, 843–847.

    Article  Google Scholar 

  40. Grzybowski, M.; Hugues, V.; Blanchard-Desce, M.; Gryko, D. T. Two-photon-induced fluorescence in new π-expanded diketopyrrolopyrroles. Chem.—Eur. J. 2014, 20, 12493–12501.

    Article  Google Scholar 

  41. Aioub, M.; El-Sayed, M. A. A real-time surface enhanced raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles. J. Am. Chem. Soc. 2016, 138, 1258–1264.

    Article  Google Scholar 

  42. Wang, Z. H.; Sun, J. H.; Qiu, Y. Q.; Li, W.; Guo, X. M.; Li, Q. P.; Zhang, H. B.; Zhou, J. L.; Du, Y. Z.; Yuan, H. et al. Specific photothermal therapy to the tumors with high EphB4 receptor expression. Biomaterials 2015, 68, 32–41.

    Article  Google Scholar 

  43. Saravanakumar, G.; Lee, J.; Kim, J.; Kim, W. J. Visible light-induced singlet oxygen-mediated intracellular disassembly of polymeric micelles co-loaded with a photosensitizer and an anticancer drug for enhanced photodynamic therapy. Chem. Commun. 2015, 51, 9995–9998.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Basic Research Program of China (No. 2014CB660808), the National Natural Science Foundation of China (Nos. 61525402 and 21275076), Key University Science Research Project of Jiangsu Province (No. 15KJA430006), Program for New Century Excellent Talents in University (No. NCET-13-0853), QingLan Project, Jiangsu Province Science Foundation for Six Great Talent Peak (No. XCL-018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Zhang, Wei Huang or Xiaochen Dong.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2016_1332_MOESM1_ESM.pdf

Small-molecule diketopyrrolopyrrole-based therapeutic nanoparticles for photoacoustic imaging-guided photothermal therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Si, W., Tang, Q. et al. Small-molecule diketopyrrolopyrrole-based therapeutic nanoparticles for photoacoustic imaging-guided photothermal therapy. Nano Res. 10, 794–801 (2017). https://doi.org/10.1007/s12274-016-1332-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1332-2

Keywords

Navigation