Skip to main content
Log in

Recent advances in the development of organic photothermal nano-agents

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, photothermal therapy (PTT) has attracted tremendous attention because of its high efficacy in tumor ablation and minimal damage to normal tissues. While many inorganic nanomaterials, especially various gold nanostructures and nanocarbons, have been extensively explored for near-infrared (NIR) light triggered PTT in the past decade, a variety of organic photothermal agents have also emerged in recent years, aiming at replacing their inorganic counterparts which usually are not biodegradable. In this mini-review, we will summarize several typical classes of recently developed NIR-absorbing organic PTT nanoagents, which include NIR dye-containing micelles, porphysomes, protein-based agents, conjugated polymers, and organic/inorganic nanocomposites. The development of imaging-guided PTT and combination therapy will be introduced as well. Finally, the perspectives and challenges in the future development of PTT will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

    Article  Google Scholar 

  2. Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228.

    Article  Google Scholar 

  3. Ma, X. X.; Tao, H. Q.; Yang, K.; Feng, L. Z.; Cheng, L.; Shi, X. Z.; Li, Y. G.; Guo, L.; Liu, Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199–212.

    Article  Google Scholar 

  4. Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

    Article  Google Scholar 

  5. Weissleder, R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001, 19, 316–317.

    Article  Google Scholar 

  6. Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

    Article  Google Scholar 

  7. Zhou, F. F.; Xing, D.; Ou, Z. M.; Wu, B. Y.; Resasco, D. E.; Chen, W. R. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 2009, 14, 021009.

    Article  Google Scholar 

  8. Porcel, E.; Liehn, S.; Remita, H.; Usami, N.; Kobayashi, K.; Furusawa, Y.; Le Sech, C.; Lacombe, S. Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology 2010, 21, 085103.

    Article  Google Scholar 

  9. Wang, S. J.; Huang, P.; Nie, L. M.; Xing, R. J.; Liu, D. B.; Wang, Z.; Lin, J.; Chen, S. H.; Niu, G.; Lu, G. M. et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 2013, 25, 3055–3061.

    Article  Google Scholar 

  10. Manikandan, M.; Hasan, N.; Wu, H. F. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials 2013, 34, 5833–5842.

    Article  Google Scholar 

  11. Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.

    Article  Google Scholar 

  12. Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5′-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.

    Article  Google Scholar 

  13. Liu, Y.; Yin, J. J.; Nie, Z. H. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res., in press, DOI: 10.1007/s12274-014-0541-9.

  14. Sherlock, S. P.; Dai, H. J. Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice. Nano Res. 2011, 4, 1248–1260.

    Article  Google Scholar 

  15. Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. Int. Ed. 2013, 52, 4160–4164.

    Article  Google Scholar 

  16. Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

    Article  Google Scholar 

  17. Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S. L.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. A chelator-free multifunctional [64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 2010, 132, 15351–15358.

    Article  Google Scholar 

  18. Song, X. J.; Gong, H.; Yin, S. N.; Cheng, L.; Wang, C.; Li, Z. W.; Li, Y. G.; Wang, X. Y.; Liu, G.; Liu, Z. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv. Funct. Mater. 2014, 24, 1194–1201.

    Article  Google Scholar 

  19. Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano. 2014, 8, 6922–6933.

    Article  Google Scholar 

  20. Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011, 11, 2560–2566.

    Article  Google Scholar 

  21. Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

    Article  Google Scholar 

  22. Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26–49.

    Article  Google Scholar 

  23. Braydich-Stolle, L.; Hussain, S.; Schlager, J. J.; Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005, 88, 412–419.

    Article  Google Scholar 

  24. Zheng, X. H.; Xing, D.; Zhou, F. F.; Wu, B. Y.; Chen, W. R. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy. Mol. Pharm. 2011, 8, 447–456.

    Article  Google Scholar 

  25. Wang, C.; Xu, H.; Liang, C.; Liu, Y. M.; Li, Z. W.; Yang, G. B.; Cheng, L.; Li, Y. G.; Liu, Z. Iron oxide@polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 2013, 7, 6782–6795.

    Article  Google Scholar 

  26. Yu, J.; Javier, D.; Yaseen, M. A.; Nitin, N.; Richards-Kortum, R.; Anvari, B.; Wong, M. S. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. J. Am. Chem. Soc. 2010, 132, 1929–1938.

    Article  Google Scholar 

  27. Yang, K.; Xu, H.; Cheng, L.; Sun, C. Y.; Wang, J.; Liu, Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 2012, 24, 5586–5592.

    Article  Google Scholar 

  28. Cheng, L.; Yang, K.; Chen, Q.; Liu, Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 2012, 6, 5605–5613.

    Article  Google Scholar 

  29. Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K. et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. 2011, 123, 461–464.

    Article  Google Scholar 

  30. Zha, Z. B.; Yue, X. L.; Ren, Q. S.; Dai, Z. F. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 2013, 25, 777–782.

    Article  Google Scholar 

  31. Yue, C. X.; Liu, P.; Zheng, M. B.; Zhao, P. F.; Wang, Y. Q.; Ma, Y. F.; Cai, L. T. IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials 2013, 34, 6853–6861.

    Article  Google Scholar 

  32. Song, X. J.; Gong, H.; Liu, T.; Cheng, L.; Wang, C.; Sun, X. Q.; Liang, C.; Liu, Z. J-aggregates of organic dye molecules complexed with iron oxide nanoparticles for imaging-guided photothermal therapy under 915-nm light. Small, in press, DOI: 10.1002/smll.201401025.

  33. Zheng, M. B.; Yue, C. X.; Ma, Y. F.; Gong, P.; Zhao, P. F.; Zheng, C. F.; Sheng, Z. H.; Zhang, P. F.; Wang, Z. H.; Cai, L. T. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013, 7, 2056–2067.

    Article  Google Scholar 

  34. Zheng, C. F.; Zheng, M. B.; Gong, P.; Jia, D. X.; Zhang, P. F.; Shi, B. H.; Sheng, Z. H.; Ma, Y. F.; Cai, L. T. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials 2012, 33, 5603–5609.

    Article  Google Scholar 

  35. Yuan, A. H.; Wu, J. H.; Tang, X. L.; Zhao, L. L.; Xu, F.; Hu, Y. Q. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci. 2013, 102, 6–28.

    Article  Google Scholar 

  36. Pandey, R. K.; James, N.; Chen, Y. H.; Dobhal, M. P. Cyanine dye-based compounds for tumor imaging with and without photodynamic therapy. In Heterocyclic Polymethine Dyes; Strekowski, L., Ed.; Springer: Berlin, 2008; pp 41–74.

    Chapter  Google Scholar 

  37. Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64–70.

    Article  Google Scholar 

  38. Shan, G. B.; Weissleder, R.; Hilderbrand, S. A. Upconverting organic dye doped core-shell nano-composites for dual-modality NIR imaging and photo-thermal therapy. Theranostics 2013, 3, 267–274.

    Article  Google Scholar 

  39. Tan, X.; Luo, S. L.; Wang, D. C.; Su, Y. P.; Cheng, T. M.; Shi, C. M. A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties. Biomaterials 2012, 33, 2230–2239.

    Article  Google Scholar 

  40. Cheng, L.; He, W. W.; Gong, H.; Wang, C.; Chen, Q.; Cheng, Z. P.; Liu, Z. PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy. Adv. Funct. Mater. 2013, 23, 5893–5902.

    Article  Google Scholar 

  41. Lim, C. K.; Shin, J.; Lee, Y. D.; Kim, J.; Oh, K. S.; Yuk, S. H.; Jeong, S. Y.; Kwon, I. C.; Kim, S. Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer. Theranostics 2012, 2, 871–879.

    Article  Google Scholar 

  42. Sheng, Z. H.; Hu, D. H.; Xue, M. M.; He, M.; Gong, P.; Cai, L. T. Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 2013, 5, 145–150.

    Article  Google Scholar 

  43. Landsman, M. L.; Kwant, G.; Mook, G. A.; Zijlstra, W. G. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J. Appl. Physiol. 1976, 40, 575–583.

    Google Scholar 

  44. Dzurinko, V. L.; Gurwood, A. S.; Price, J. R. Intravenous and indocyanine green angiography. Optometry 2004, 75, 743–755.

    Article  Google Scholar 

  45. Yoneya, S.; Saito, T.; Komatsu, Y.; Koyama, I.; Takahashi, K.; Duvoll-Young, J. Binding properties of indocyanine green in human blood. Invest. Ophth. Vis. Sci. 1998, 39, 1286–1290.

    Google Scholar 

  46. Saxena, V.; Sadoqi, M.; Shao, J. Degradation kinetics of indocyanine green in aqueous solution. J. Pharm. Sci. 2003, 92, 2090–2097.

    Article  Google Scholar 

  47. Mordon, S.; Devoisselle, J. M.; Soulie-Begu, S.; Desmettre, T. Indocyanine green: Physicochemical factors affecting its fluorescence in vivo. Microvasc. Res. 1998, 55, 146–152.

    Article  Google Scholar 

  48. Zheng, M. B.; Zhao, P. F.; Luo, Z. Y.; Gong, P.; Zheng, C. F.; Zhang, P. F.; Yue, C. X.; Gao, D. Y.; Ma, Y. F.; Cai, L. T. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Appl. Mater. Interfaces 2014, 6, 6709–6716.

    Article  Google Scholar 

  49. Liu, P.; Yue, C. X.; Shi, B. H.; Gao, G. H.; Li, M. X.; Wang, B.; Ma, Y. F.; Cai, L. T. Dextran based sensitive theranostic nanoparticles for near-infrared imaging and photothermal therapy in vitro. Chem. Commun. 2013, 49, 6143–6145.

    Article  Google Scholar 

  50. Gong, H.; Dong, Z. L.; Liu, Y. M.; Yin, S. N.; Cheng, L.; Xi, W. Y.; Xiang, J.; Liu, K.; Li, Y. G.; Liu, Z. Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.201401451.

  51. Yang, H.; Mao, H. J.; Wan, Z. H.; Zhu, A. J.; Guo, M.; Li, Y. L.; Li, X. M.; Wan, J. L.; Yang, X. L.; Shuai, X. T. et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 2013, 34, 9124–9133.

    Article  Google Scholar 

  52. Peng, C. L.; Shih, Y. H.; Lee, P. C.; Hsieh, T. M. H.; Luo, T. Y.; Shieh, M. J. Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano 2011, 5, 5594–5607.

    Article  Google Scholar 

  53. Srinivasan, S.; Manchanda, R.; Lei, T. J.; Nagesetti, A.; Fernandez-Fernandez, A.; McGoron, A. J. Targeted nanoparticles for simultaneous delivery of chemotherapeutic and hyperthermia agents-An in vitro study. J. Photochem. Photobiol. B 2014, 136, 81–90.

    Article  Google Scholar 

  54. Wan, Z. H.; Mao, H. J.; Guo, M.; Li, Y. L.; Zhu, A. J.; Yang, H.; He, H.; Shen, J. K.; Zhou, L. J.; Jiang, Z. et al. Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication. Theranostics 2014, 4, 399–411.

    Article  Google Scholar 

  55. Lovell, J. F.; Jin, C. S.; Huynh, E.; MacDonald, T. D.; Cao, W. G.; Zheng, G. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew. Chem. Int. Ed. 2012, 51, 2429–2433.

    Article  Google Scholar 

  56. Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013, 7, 2541–2550.

    Article  Google Scholar 

  57. Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. H. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324–332.

    Article  Google Scholar 

  58. Ng, K. K.; Lovell, J. F.; Vedadi, A.; Hajian, T.; Zheng, G. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. ACS Nano 2013, 7, 3484–3490.

    Article  Google Scholar 

  59. Huynh, E.; Jin, C. S.; Wilson, B. C.; Zheng, G. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjugate Chem. 2014, 25, 796–801.

    Article  Google Scholar 

  60. Liu, T. W.; MacDonald, T. D.; Shi, J. Y.; Wilson, B. C.; Zheng, G. Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew. Chem. Int. Ed. 2012, 51, 13128–13131.

    Article  Google Scholar 

  61. MacDonald, T. D.; Liu, T. W.; Zheng, G. An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew. Chem. Int. Ed. 2014, 53, 6956–6959.

    Article  Google Scholar 

  62. Chen, Q.; Wang, C.; Cheng, L.; He, W. W.; Cheng, Z. P.; Liu, Z. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials 2014, 35, 2915–2923.

    Article  Google Scholar 

  63. Wu, L.; Fang, S. T.; Shi, S.; Deng, J. Z.; Liu, B.; Cai, L. T. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. Biomacromolecules 2013, 14, 3027–3033.

    Article  Google Scholar 

  64. Sheng, Z. H.; Song, L.; Zheng, J. X.; Hu, D. H.; He, M.; Zheng, M. B.; Gao, G. H.; Gong, P.; Zhang, P. F.; Ma, Y. F. et al. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 2013, 34, 5236–5243.

    Article  Google Scholar 

  65. Gao, F. P.; Lin, Y. X.; Li, L. L.; Liu, Y.; Mayerhöffer, U.; Spenst, P.; Su, J. G.; Li, J. Y.; Würthner, F.; Wang, H. Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo. Biomaterials 2014, 35, 1004–1014.

    Article  Google Scholar 

  66. Huang, P.; Rong, P. F.; Jin, A.; Yan, X. F.; Zhang, M. G.; Lin, J.; Hu, H.; Wang, Z.; Yue, X. Y.; Li, W. W. et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv. Mater. 2014, 26, 6401–6408.

    Article  Google Scholar 

  67. Chen, Q.; Wang, C.; Zhan, Z. X.; He, W. W.; Cheng, Z. P.; Li, Y. Y.; Liu, Z. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials 2014, 35, 8206–8214.

    Article  Google Scholar 

  68. Chen, Q.; Liang, C.; Wang, X.; He, J. K.; Li, Y. G.; Liu, Z. An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. Biomaterials 2014, 35, 9355–9362.

    Article  Google Scholar 

  69. Chen, M.; Fang, X. L.; Tang, S. H.; Zheng, N. F. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem. Commun. 2012, 48, 8934–8936.

    Article  Google Scholar 

  70. Zha, Z. B.; Wang, J. R.; Qu, E. Z.; Zhang, S. H.; Jin, Y. S.; Wang, S. M.; Dai, Z. F. Polypyrrole hollow microspheres as echogenic photothermal agent for ultrasound imaging guided tumor ablation. Sci. Rep. 2013, 3, 2360.

    Article  Google Scholar 

  71. Gong, H.; Cheng, L.; Xiang, J.; Xu, H.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Near-infrared absorbing polymeric nanoparticles as a versatile drug carrier for cancer combination therapy. Adv. Funct. Mater. 2013, 23, 6059–6067.

    Article  Google Scholar 

  72. Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359.

    Article  Google Scholar 

  73. Fu, G. L.; Liu, W.; Li, Y. Y.; Jin, Y. S.; Jiang, L. D.; Liang, X. L.; Feng, S. S.; Dai, Z. F. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjugate Chem. 2014, 25, 1655–1663.

    Article  Google Scholar 

  74. Cheng, L.; Gong, H.; Zhu, W. W.; Liu, J. J.; Wang, X. Y.; Liu, G.; Liu, Z. PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 2014, 35, 9844–9852.

    Article  Google Scholar 

  75. Fu, G. L.; Liu, W.; Feng, S. S.; Yue, X. L. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012, 48, 11567–11569.

    Article  Google Scholar 

  76. Ma, Y.; Tong, S.; Bao, G.; Gao, C.; Dai, Z. F. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials 2013, 34, 7706–7714.

    Article  Google Scholar 

  77. Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J. H.; Yang, H. H.; Liu, G.; Chen, X. Y. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8, 3876–3883.

    Article  Google Scholar 

  78. Zhang, X.; Xu, X. W.; Li, T. T.; Lin, M.; Lin, X. Y.; Zhang, H.; Sun, H. C.; Yang, B. Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures. ACS Appl. Mater. Interfaces 2014, 6, 14552–14561.

    Article  Google Scholar 

  79. Tian, Q. W.; Wang, Q.; Yao, K. X.; Teng, B. Y.; Zhang, J. Z.; Yang, S. P.; Han, Y. Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 2014, 10, 1063–1068.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Chen, Q. & Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 8, 340–354 (2015). https://doi.org/10.1007/s12274-014-0620-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0620-y

Keywords

Navigation