Skip to main content
Log in

A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cells. However, how to apply these nanomaterials as a nano-bio interface in a microfluidic device for efficient CTC capture with high specificity remains a challenge. In the present work, we first found that a titanium dioxide (TiO2) nanorod array that can be conveniently prepared on multiple kinds of substrates has high affinity for tumor cells. Then, the TiO2 nanorod array was vertically grown on the surface of a microchannel with hexagonally patterned Si micropillars via a hydrothermal reaction, forming a new kind of a micro-nano 3D hierarchically structured microfluidic device. The vertically grown TiO2 nanorod array was used as a sensitive nano-bio interface of this 3D hierarchically structured microfluidic device, which showed high efficiency of CTC capture (76.7% ± 7.1%) in an artificial whole-blood sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta, G. P.; Massagué, J. Cancer metastasis: Building a framework. Cell 2006, 127, 679–695.

    Article  Google Scholar 

  2. Weigelt, B.; Peterse, J. L.; Van’t Veer, L. J. Breast cancer metastasis: Markers and models. Nat. Rev. Cancer 2005, 5, 591–602.

    Article  Google Scholar 

  3. Chambers, A. F.; Groom, A. C.; MacDonald, I. C. Metastasis: Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2002, 2, 563–572.

    Article  Google Scholar 

  4. Fidler, I. J. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 2003, 3, 453–458.

    Article  Google Scholar 

  5. Nakagawa, T.; Martinez, S. R.; Goto, Y.; Koyanagi, K.; Kitago, M.; Shingai, T.; Elashoff, D. A.; Ye, X.; Singer, F. R.; Giuliano, A. E. Detection of circulating tumor cells in earlystage breast cancer metastasis to axillary lymph nodes. Clin. Cancer Res. 2007, 13, 4105–4110.

    Article  Google Scholar 

  6. Cristofanilli, M.; Budd, G. T.; Ellis, M. J.; Stopeck, A.; Matera, J.; Miller, M. C.; Reuben, J. M.; Doyle, G. V.; Allard, W. J.; Terstappen, L. W. M. M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004, 351, 781–791.

    Article  Google Scholar 

  7. Shaffer, D. R.; Leversha, M. A.; Danila, D. C.; Lin, O.; Gonzalez-Espinoza, R.; Gu, B.; Anand, A.; Smith, K.; Maslak, P.; Doyle, G. V. et al. Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin. Cancer Res. 2007, 13, 2023–2029.

    Article  Google Scholar 

  8. Lu, N. N.; Xie, M.; Wang, J.; Lv, S. W.; Yi, J. S.; Dong, W. G.; Huang, W. H. Biotin-triggered decomposable immunomagnetic beads for capture and release of circulating tumor cells. ACS Appl. Mater. Interfaces 2015, 7, 8817–8826.

    Article  Google Scholar 

  9. Fang, S.; Wang, C.; Xiang, J.; Cheng, L.; Song, X. J.; Xu, L. G.; Peng, R.; Liu, Z. Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. Nano Res. 2014, 7, 1327–1336.

    Article  Google Scholar 

  10. He, W.; Wang, H. F.; Hartmann, L. C.; Cheng, J.-X.; Low, P. S. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl. Acad. Sci. USA 2007, 104, 11760–11765.

    Article  Google Scholar 

  11. Lecharpentier, A.; Vielh, P.; Perez-Moreno, P.; Planchard, D.; Soria, J. C.; Farace, F. Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br. J. Cancer 2011, 105, 1338–1341.

    Article  Google Scholar 

  12. Tan, S. J.; Yobas, L.; Lee, G. Y. H.; Ong, C. N.; Lim, C. T. Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 2009, 11, 883–892.

    Article  Google Scholar 

  13. Adams, A. A.; Okagbare, P. I.; Feng, J.; Hupert, M. L.; Patterson, D.; Göttert, J.; McCarley, R. L.; Nikitopoulos, D.; Murphy, M. C.; Soper, S. A. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 2008, 130, 8633–8641.

    Article  Google Scholar 

  14. Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; Kwak, E. L.; Digumarthy, S.; Muzikansky, A. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450, 1235–1239.

    Article  Google Scholar 

  15. Lin, M.; Chen, J.-F.; Lu, Y.-T.; Zhang, Y.; Song, J. Z.; Hou, S.; Ke, Z. F.; Tseng, H.-R. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc. Chem. Res. 2014, 47, 2941–2950.

    Article  Google Scholar 

  16. Sarioglu, A. F.; Aceto, N.; Kojic, N.; Donaldson, M. C.; Zeinali, M.; Hamza, B.; Engstrom, A.; Zhu, H. L.; Sundaresan, T. K.; Miyamoto, D. T. et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 2015, 12, 685–691.

    Google Scholar 

  17. Yu, X. L.; Wang, B. R.; Zhang, N. G.; Yin, C. Q.; Chen, H.; Zhang, L. L.; Cai, B.; He, Z. B.; Rao, L.; Liu, W. et al. Capture and release of cancer cells by combining on-chip purification and off-chip enzymatic treatment. ACS App. Mater. Interfaces 2015, 7, 24001–24007.

    Article  Google Scholar 

  18. Whitesides, G. M. The origins and the future of microfluidics. Nature 2006, 442, 368–373.

    Article  Google Scholar 

  19. Stott, S. L.; Hsu, C.-H.; Tsukrov, D. I.; Yu, M.; Miyamoto, D. T.; Waltman, B. A.; Rothenberg, S. M.; Shah, A. M.; Smas, M. E.; Korir, G. K. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA 2010, 107, 18392–18397.

    Article  Google Scholar 

  20. Murlidhar, V.; Zeinali, M.; Grabauskiene, S.; Ghannad- Rezaie, M.; Wicha, M. S.; Simeone, D. M.; Ramnath, N.; Reddy, R. M.; Nagrath, S. A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small 2014, 10, 4895–4904.

  21. Yoon, H. J.; Kozminsky, M.; Nagrath, S. Emerging role of nanomaterials in circulating tumor cell isolation and analysis. ACS Nano 2014, 8, 1995–2017.

    Article  Google Scholar 

  22. Wang, L. X.; Asghar, W.; Demirci, U.; Wan, Y. Nanostructured substrates for isolation of circulating tumor cells. Nano Today 2013, 8, 374–387.

    Article  Google Scholar 

  23. Li, Y. Q.; Chandran, B. K.; Lim, C. T.; Chen, X. D. Rational design of materials interface for efficient capture of circulating tumor cells. Adv. Sci. 2015, 2, DOI: 10.1002/advs.201500118.

    Google Scholar 

  24. Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2011, 6, 13–22.

    Article  Google Scholar 

  25. Dang, J. M.; Leong, K. W. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv. Mater. 2007, 19, 2775–2779.

    Article  Google Scholar 

  26. Stevens, M. M.; George, J. H. Exploring and engineering the cell surface interface. Science 2005, 310, 1135–1138.

    Article  Google Scholar 

  27. Yang, M. T.; Sniadecki, N. J.; Chen, C. S. Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 2007, 19, 3119–3123.

    Article  Google Scholar 

  28. Wu, C.-H.; Huang, Y.-Y.; Chen, P.; Hoshino, K.; Liu, H. Y.; Frenkel, E. P.; Zhang, J. X.; Sokolov, K. V. Versatile immunomagnetic nanocarrier platform for capturing cancer cells. ACS Nano 2013, 7, 8816–8823.

    Article  Google Scholar 

  29. Li, Y. Y.; Lu, Q. H.; Liu, H. L.; Wang, J. F.; Zhang, P. C.; Liang, H. G.; Jiang, L.; Wang, S. T. Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells. Adv. Mater. 2015, 27, 6848–6854.

    Article  Google Scholar 

  30. Yoon, H. J.; Kim, T. H.; Zhang, Z.; Azizi, E.; Pham, T. M.; Paoletti, C.; Lin, J.; Ramnath, N.; Wicha, M. S.; Hayes, D. F. et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 2013, 8, 735–741.

    Article  Google Scholar 

  31. Li, W.; Wang, J. S.; Ren, J. S.; Qu, X. G. 3D graphene oxide–polymer hydrogel: Near-infrared light-triggered active scaffold for reversible cell capture and on-demand release. Adv. Mater. 2013, 25, 6737–6743.

    Article  Google Scholar 

  32. Yoon, H. J.; Shanker, A.; Wang, Y.; Kozminsky, M.; Jin, Q.; Palanisamy, N.; Burness, M. L.; Azizi, E.; Simeone, D. M.; Wicha, M. S. et al. Tunable thermal-sensitive polymergraphene oxide composite for efficient capture and release of viable circulating tumor cells. Adv. Mater. 2016, 28, 4891–4897.

    Article  Google Scholar 

  33. Yin, S. Y.; Wu, Y. L.; Hu, B. H.; Wang, Y.; Cai, P. Q.; Tan, C. K.; Qi, D. P.; Zheng, L. Y.; Leow, W. R.; Tan, N. S. et al. Three-dimensional graphene composite macroscopic structures for capture of cancer cells. Adv. Mater. Interfaces 2014, 1, DOI: 10.1002/admi.201300043.

  34. Wang, S. T.; Wang, H.; Jiao, J.; Chen, K. J.; Owens, G. E.; Kamei, K. I.; Sun, J.; Sherman, D. J.; Behrenbruch, C. P.; Wu, H. et al. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew. Chem. 2009, 121, 9132–9135.

    Article  Google Scholar 

  35. Zhang, N. G.; Deng, Y. L.; Tai, Q. D.; Cheng, B. R.; Zhao, L. B.; Shen, Q. L.; He, R. X.; Hong, L. Y.; Liu, W.; Guo, S. S. et al. Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv. Mater. 2012, 24, 2756–2760.

    Article  Google Scholar 

  36. Liu, X. L.; Chen, L.; Liu, H. L.; Yang, G.; Zhang, P. C.; Han, D.; Wang, S. T.; Jiang, L. Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture. NPG Asia Mater. 2013, 5, e63.

    Article  Google Scholar 

  37. Sun, N.; Wang, J.; Ji, L. Y.; Hong, S. N.; Dong, J. J.; Guo, Y. H.; Zhang, K. C.; Pei, R. J. A cellular compatible chitosan nanoparticle surface for isolation and in situ culture of rare number ctcs. Small 2015, 11, 5444–5451.

    Article  Google Scholar 

  38. Sun, N.; Liu, M.; Wang, J.; Wang, Z. L.; Li, X. P.; Jiang, B.; Pei, R. J. Chitosan nanofibers for specific capture and nondestructive release of CTCs assisted by pCBMA brushes. Small 2016, 12, 5090–5097.

    Article  Google Scholar 

  39. Hoshino, K.; Huang, Y.-Y.; Lane, N.; Huebschman, M.; Uhr, J. W.; Frenkel, E. P.; Zhang, X. J. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 2011, 11, 3449–3457.

    Article  Google Scholar 

  40. Meng, J. X.; Zhang, P. C.; Zhang, F. L.; Liu, H. L.; Fan, J. B.; Liu, X. L.; Yang, G.; Jiang, L.; Wang, S. T. A self-cleaning TiO2 nanosisal-like coating toward disposing nanobiochips of cancer detection. ACS Nano 2015, 9, 9284–9291.

    Article  Google Scholar 

  41. He, R. X.; Zhao, L. B.; Liu, Y. M.; Zhang, N. G.; Cheng, B. R.; He, Z. B.; Cai, B.; Li, S. Z.; Liu, W.; Guo, S. S. et al. Biocompatible TiO2 nanoparticle-based cell immunoassay for circulating tumor cells capture and identification from cancer patients. Biomed. Microdevices 2013, 15, 617–626.

    Article  Google Scholar 

  42. Wu, S. L.; Weng, Z. Y.; Liu, X. M.; Yeung, K. W. K.; Chu, P. K. Functionalized TiO2 based nanomaterials for biomedical applications. Adv. Funct. Mater. 2014, 24, 5464–5481.

    Article  Google Scholar 

  43. Sun, N.; Li, X.; Wang, Z.; Zhang, R.; Wang, J.; Wang, K.; Pei, R. A multiscale TiO2 nanorod array for ultrasensitive capture of circulating tumor cells. ACS Appl. Mater. Interfaces 2016, 8, 12638–12343.

    Article  Google Scholar 

  44. Qiu, J. C.; Li, J. H.; Wang, S.; Ma, B. J.; Zhang, S.; Guo, W. B.; Zhang, X. D.; Wei, T.; Sang, Y. H.; Liu, H. TiO2 nanorod array constructed nanotopography for regulation of mesenchymal stem cells fate and the realization of location-committed stem cell differentiation. Small 2016, 12, 1770–1778.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for funding from the National Natural Science Foundation of China (Nos. 51402063, 51432005, 61405040, 61505010, 51502018, 31270022, and 81471784), the “100 Talents Program” of the Chinese Academy of Sciences, Beijing City Committee of science and technology (No. Z151100003315010), Beijing Natural Science Foundation (Nos. 2164077 and 2164076), the Fundamental Research Funds of Shandong University (No. 2014QY003), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2015023). The authors also acknowledge the support from the “thousands talents” program for pioneer researchers and his innovation team, and support from the President Funding of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caofeng Pan, Zhong Lin Wang or Hong Liu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2016_1313_MOESM1_ESM.pdf

A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Zhao, K., Li, L. et al. A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells. Nano Res. 10, 776–784 (2017). https://doi.org/10.1007/s12274-016-1313-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1313-5

Keywords

Navigation