Skip to main content
Log in

A highly durable catalyst based on Co x Mn3–x O4 nanosheets for low-temperature formaldehyde oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cost-effective catalysts for the oxidation of volatile organic compounds (VOCs) are critical to energy conversion applications and environmental protection. The main bottleneck of this process is the development of an efficient, stable, and cost-effective catalyst that can oxidize HCHO at low temperature. Here, an advanced material consisting of manganese cobalt oxide nanosheet arrays uniformly covered on a carbon textile is successfully fabricated by a simple anodic electrodeposition method combined with post annealing treatment, and can be directly applied as a high-performance catalytic material for HCHO elimination. Benefiting from the increased surface oxygen species and improved redox properties, the as-prepared manganese cobalt oxide nanosheets showed substantially higher catalytic activity for HCHO oxidation. The catalyst completely converted HCHO to CO2 at temperatures as low as 100 °C, and exhibited excellent catalytic stability. Such impressive results are rarely achieved by non-precious metal-based catalysts at such low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, B. Y.; Li, J. H. Positive effects of K+ ions on threedimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation. ACS Catal. 2014, 4, 2753–2762.

    Article  Google Scholar 

  2. Fan, W. J.; Li, H. B.; Zhao, F. Y.; Xiao, X. J.; Huang, Y. C.; Ji, H. B; Tong, Y. X. Boosting the photocatalytic performance of (001) BiOI: Enhancing donor density and separation efficiency of photogenerated electrons and holes. Chem. Commun. 2016, 52, 5316–5319.

    Article  Google Scholar 

  3. Huang, H. B.; Xu, Y.; Feng, Q. Y.; Leung, D. Y. C. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2015, 5, 2649–2669.

    Article  Google Scholar 

  4. Qi, J.; Chen, J.; Li, G. D.; Li, S. X.; Gao, Y.; Tang, Z. Y. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy Environ. Sci. 2012, 5, 8937–8941.

    Article  Google Scholar 

  5. Xu, Q. L.; Lei, W. Y.; Li, X. Y.; Qi, X. Y.; Yu, J. G.; Liu, G.; Wang, J. L.; Zhang, P. Y. Efficient removal of formaldehyde by nanosized gold on well-defined CeO2 nanorods at room temperature. Environ. Sci. Technol. 2014, 48, 9702–9708.

    Article  Google Scholar 

  6. Zhang, C. B.; Liu, F. D.; Zhai, Y. P.; Ariga, H.; Yi, N.; Liu, Y. C.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew. Chem., Int. Ed. 2012, 51, 9628–9632.

    Article  Google Scholar 

  7. Huang, Y. C.; Li, H. B.; Balogun, M. S.; Yang, H.; Tong, Y. X.; Lu, X. H.; Ji, H. B. Three-dimensional TiO2/CeO2 nanowire composite for efficient formaldehyde oxidation at low temperature. RSC Adv. 2015, 5, 7729–7733.

    Article  Google Scholar 

  8. Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.

    Article  Google Scholar 

  9. Xu, Z. H.; Yu, J. G.; Low, J. X.; Jaroniec, M. Microemulsionassisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde. ACS Appl. Mater. Interfaces 2014, 6, 2111–2117.

    Article  Google Scholar 

  10. Chen, H. M.; He, J. H.; Zhang, C. B.; He, H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. J. Phys. Chem. C 2007, 111, 18033–18038.

    Article  Google Scholar 

  11. Zhang, J. H.; Li, Y. B.; Wang, L.; Zhang, C. B.; He, H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal. Sci. Technol. 2015, 5, 2305–2313.

    Article  Google Scholar 

  12. Yao, X. J.; Xiong, Y.; Zou, W. X.; Zhang, L.; Wu, S. G.; Dong, X.; Gao, F.; Deng, Y.; Tang, C. J.; Chen, Z. et al. Correlation between the physicochemical properties and catalytic performances of CexSn1–x O2 mixed oxides for NO reduction by CO. Appl. Catal. B: Environ. 2014, 144, 152–165.

    Article  Google Scholar 

  13. Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363–368.

    Article  Google Scholar 

  14. Huang, H. B.; Leung, D. Y. C. Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles. ACS Catal. 2011, 1, 348–354.

    Article  Google Scholar 

  15. Chen, B. B.; Shi, C.; Crocker, M.; Wang, Y.; Zhu, A. M. Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Appl. Catal. B: Environ. 2013, 132–133, 245–255.

    Article  Google Scholar 

  16. Zhang, C. X.; Li, S. R.; Wang, T.; Wu, G. W.; Ma, X. B.; Gong, J. L. Pt-based core–shell nanocatalysts with enhanced activity and stability for CO oxidation. Chem. Commun. 2013, 49, 10647–10649.

    Article  Google Scholar 

  17. Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3–32.

    Article  Google Scholar 

  18. Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.

    Article  Google Scholar 

  19. Bai, B. Y.; Arandiyan, H.; Li, J. H. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl. Catal. B: Environ. 2013, 142–143, 677–683.

    Article  Google Scholar 

  20. Liotta, L. F.; Ousmane, M.; Di Carlo, G.; Pantaleo, G.; Deganello, G.; Marcì, G.; Retailleau, L.; Giroir-Fendler, A. Total oxidation of propene at low temperature over Co3O4–CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Appl. Catal. A: Gen. 2008, 347, 81–88.

    Article  Google Scholar 

  21. Zhen, J. M.; Wang, X.; Liu, D. P.; Wang, Z.; Li, J. Q.; Wang, F.; Wang, Y. H.; Zhang, H. J. Mass production of Co3O4@CeO2 core@shell nanowires for catalytic CO oxidation. Nano Res. 2015, 8, 1944–1955.

    Article  Google Scholar 

  22. Shi, C.; Wang, Y.; Zhu, A. M.; Chen, B. B.; Au, C. MnxMn3–x O4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde. Catal. Commun. 2012, 28, 18–22.

    Article  Google Scholar 

  23. Wang, Y.; Zhu, X. B.; Crocker, M.; Chen, B. B.; Shi, C. A comparative study of the catalytic oxidation of HCHO and CO over Mn0.75Co2.25O4 catalyst: The effect of moisture. Appl. Catal. B: Environ. 2014, 160–161, 542–551.

    Article  Google Scholar 

  24. Huang, Y. C.; Fan, W. J.; Long, B.; Li, H. B.; Qiu, W. T.; Zhao, F. Y.; Tong, Y. X.; Ji, H. B. Alkali-modified non-precious metal 3D-NiCo2O4 nanosheets for efficient formaldehyde oxidation at low temperature. J. Mater. Chem. A 2016, 4, 3648–3654.

    Article  Google Scholar 

  25. Maliyekkal, S. M.; Lisha, K. P.; Pradeep, T. A novel cellulose–manganese oxide hybrid material by in situ soft chemical synthesis and its application for the removal of Pb(II) from water. J. Hazard. Mater. 2010, 181, 986–995.

    Article  Google Scholar 

  26. Subramanian, V.; Zhu, H. W.; Wei, B. Q. Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem. Phys. Lett. 2008, 453, 242–249.

    Article  Google Scholar 

  27. Balogun, M.-S.; Qiu, W. T.; Lyu, F. Y.; Luo, Y.; Meng, H.; Li, J. T.; Mai, W. J.; Mai, L. Q.; Tong, Y. X. All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 2016, 26, 446–455.

    Article  Google Scholar 

  28. Quiroz, J.; Giraudon, J.-M.; Gervasini, A.; Dujardin, C.; Lancelot, C.; Trentesaux, M.; Lamonier, J. F. Total oxidation of formaldehyde over MnOx-CeO2 catalysts: The effect of acid treatment. ACS Catal. 2015, 5, 2260–2269.

    Article  Google Scholar 

  29. Huang, Y. C.; Long, B.; Tang, M. N.; Rui, Z. B.; Balogun, M. S.; Tong, Y. X.; Ji, H. B. Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl. Catal. B: Environ. 2016, 181, 779–787.

    Article  Google Scholar 

  30. Ren, Z.; Botu, V.; Wang, S. B.; Meng, Y. T.; Song, W. Q.; Guo, Y. B.; Ramprasad, R.; Suib, S. L.; Gao, P. X. Monolithically integrated spinel MxMn3–x O4 (M = Co, Ni, Zn) nanoarray catalysts: Scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation. Angew. Chem., Int. Ed. 2014, 53, 7223–7227.

    Article  Google Scholar 

  31. Li, H. F.; Zhang, N.; Chen, P.; Luo, M. F.; Lu, J. Q. High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation. Appl. Catal. B: Environ. 2011, 110, 279–285.

    Article  Google Scholar 

  32. McCarty, J. G.; Wise, H. Perovskite catalysts for methane combustion. Catal. Today 1990, 8, 231–248.

    Article  Google Scholar 

  33. Li, J. H.; Fu, H. J.; Fu, L. X.; Hao, J. M. Complete combustion of methane over indium tin oxides catalysts. Environ. Sci. Technol. 2006, 40, 6455–6459.

    Article  Google Scholar 

  34. Tang, X. F.; Li, Y. G.; Huang, X. M.; Xu, Y. D.; Zhu, H. Q.; Wang, J. G.; Shen, W. J. MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature. Appl. Catal. B: Environ. 2006, 62, 265–273.

    Article  Google Scholar 

  35. Torres, J. Q.; Giraudon, J. M.; Lamonier, J. F. Formaldehyde total oxidation over mesoporous MnOx catalysts. Catal. Today 2011, 176, 277–280.

    Article  Google Scholar 

  36. Wen, Y. R.; Tang, X.; Li, J. H.; Hao, J. M.; Wei, L. S.; Tang, X. F. Impact of synthesis method on catalytic performance of MnOx–SnO2 for controlling formaldehyde emission. Catal. Commun. 2009, 10, 1157–1160.

    Article  Google Scholar 

  37. Zhou, L.; He, J. H.; Zhang, J.; He, Z. C.; Hu, Y. C.; Zhang, C. B.; He, H. Facile in-situ synthesis of manganese dioxide nanosheets on cellulose fibers and their application in oxidative decomposition of formaldehyde. J. Phys. Chem. C 2011, 115, 16873–16878.

    Article  Google Scholar 

  38. Shen, Y. N.; Yang, X. Z.; Wang, Y. Z.; Zhang, Y. B.; Zhu, H. Y.; Gao, L.; Jia, M. L. The states of gold species in CeO2 supported gold catalyst for formaldehyde oxidation. Appl. Catal. B: Environ. 2008, 79, 142–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanming Zhang or Hongbing Ji.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Ye, K., Li, H. et al. A highly durable catalyst based on Co x Mn3–x O4 nanosheets for low-temperature formaldehyde oxidation. Nano Res. 9, 3881–3892 (2016). https://doi.org/10.1007/s12274-016-1257-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1257-9

Keywords

Navigation