Skip to main content
Log in

Facet-dependent Cu2O nanocrystals in manipulating alignment of liquid crystals and photomechanical behaviors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Manipulating the alignment of liquid crystals (LCs) is a hot and fundamental issue for their applications in block copolymers, photonics, actuators, biosensors, and liquid-crystal displays. Here, the surface characteristic of Cu2O nanocrystals was well controlled to manipulate the orientation of the LCs. The mechanism of the orientation of the LCs induced by Cu2O nanocrystals was elucidated based on the interaction between the LCs and Cu2O nanocrystals. To comprehensively prove our assumption, different types of LCs (nematic, cholesteric, and smectic) as well as the same type of LCs with different polarities were selected in our system. Moreover, the photomechanical behaviors of the LC polymer composites demonstrated that the alignment of LCs can be effectively manipulated using Cu2O nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, H. F.; Kobayashi, T.; Yang, H. Liquid-crystalline ordering helps block copolymer self-assembly. Adv. Mater. 2011, 23, 3337–3344.

    Article  Google Scholar 

  2. Chen, G.; Wang, L.; Wang, Q.; Sun, J.; Song, P.; Chen, X. W.; Liu, X.; Guan, S. H.; Zhang, X. G.; Wang, L. P. et al. Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection. ACS Appl. Mater. Interfaces 2014, 6, 1380–1384.

    Article  Google Scholar 

  3. Yu, Y. L.; Ikeda, T. Soft actuators based on liquid-crystalline elastomers. Angew. Chem., Int. Ed. 2006, 45, 5416–5418.

    Article  Google Scholar 

  4. Bi, X. Y.; Hartono, D.; Yang, K. L. Real-time liquid crystal pH sensor for monitoring enzymatic activities of penicillinase. Adv. Funct. Mater. 2009, 19, 3760–3765.

    Article  Google Scholar 

  5. Ma, J.; Hurley, S.; Zheng, Z. G.; Yang, D. K. Investigation of alignment direction in wide view film and rubbing angle of twisted nematic liquid crystal display mode. Liq. Cryst. 2009, 36, 487–492.

    Article  Google Scholar 

  6. Hoogboom, J.; Elemans, J. A. A. W.; Rasing, T.; Rowan, A. E.; Nolte, R. J. M. Supramolecular command surfaces for liquid crystal alignment. Polym. Int. 2007, 56, 1186–1191.

    Article  Google Scholar 

  7. Kundu, S.; Lee, M. H.; Lee, S. H.; Kang, S. W. In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification. Adv. Mater. 2013, 25, 3365–3370.

    Article  Google Scholar 

  8. Finkelmann, H.; Kock, H. J.; Rehage, H. Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers—A new type of liquid crystalline material. Die Makromol. Chem. Rapid Commun. 1981, 2, 317–322.

    Article  Google Scholar 

  9. Criante, L.; Scotognella, F. Low-voltage tuning in a nanoparticle/liquid crystal photonic structure. J. Phys. Chem. C 2012, 116, 21572–21576.

    Article  Google Scholar 

  10. Teng, W. Y.; Jeng, S. C.; Kuo, C. W.; Lin, Y. R.; Liao, C. C.; Chin, W. K. Nanoparticles-doped guest–host liquid crystal displays. Opt. Lett. 2008, 33, 1663–1665.

    Article  Google Scholar 

  11. Wang, L.; He, W. L.; Xiao, X.; Meng, F. G.; Zhang, Y.; Yang, P. Y.; Wang, L. P.; Xiao, J. M.; Yang, H.; Lu, Y. F. Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles. Small 2012, 8, 2189–2193.

    Article  Google Scholar 

  12. Wang, L.; He, W. L.; Xiao, X.; Wang, M.; Wang, M.; Yang, P. Y.; Zhou, Z. J.; Yang, H.; Yu, H. F.; Lu, Y. F. Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles. J. Mater. Chem. 2012, 22, 19629–19633.

    Article  Google Scholar 

  13. Qi, H.; Hegmann, T. Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J. Mater. Chem. 2008, 18, 3288–3294.

    Article  Google Scholar 

  14. Russell, J. M.; Oh, S.; LaRue, I.; Zhou, O.; Samulski, E. T. Alignment of nematic liquid crystals using carbon nanotube films. Thin Solid Films 2006, 509, 53–57.

    Article  Google Scholar 

  15. Lu, S. Y.; Chien, L. C. Carbon nanotube doped liquid crystal OCB cells: Physical and electro-optical properties. Opt. Express 2008, 16, 12777–12785.

    Article  Google Scholar 

  16. Qi, H.; O’ Neil, J.; Hegmann, T. Chirality transfer in nematic liquid crystals doped with (S)-naproxen-functionalized gold nanoclusters: An induced circular dichroism study. J. Mater. Chem. 2008, 18, 374–380.

    Article  Google Scholar 

  17. Jeng, S. C.; Kuo, C. W.; Wang, H. L.; Liao, C. C. Nanoparticles-induced vertical alignment in liquid crystal cell. Appl. Phys. Lett. 2007, 91, 061112.

    Article  Google Scholar 

  18. Qi, H.; Kinkead, B.; Hegmann, T. Unprecedented dual alignment mode and freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters. Adv. Funct. Mater. 2008, 18, 212–221.

    Article  Google Scholar 

  19. Zhou, W.; Lin, L. J.; Zhao, D. Y.; Guo, L. Synthesis of nickel bowl-like nanoparticles and their doping for inducing planar alignment of a nematic liquid crystal. J. Am. Chem. Soc. 2011, 133, 8389–8391.

    Article  Google Scholar 

  20. Zhao, D. Y.; Zhou, W.; Cui, X. P.; Tian, Y.; Guo, L.; Yang, H. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv. Mater. 2011, 23, 5779–5784.

    Article  Google Scholar 

  21. Qi, H.; Kinkead, B.; Marx, V. M.; Zhang, H. R.; Hegmann, T. Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts. ChemPhysChem 2009, 10, 1211–1218.

    Article  Google Scholar 

  22. Kinkead, B.; Hegmann, T. Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture. J. Mater. Chem. 2010, 20, 448–458.

    Article  Google Scholar 

  23. Qi, H.; Hegmann, T. Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles. J. Mater. Chem. 2006, 16, 4197–4205.

    Article  Google Scholar 

  24. Stöhr, J.; Samant, M. G.; Luning, J.; Callegari, A. C.; Chaudhari, P.; Doyle, J. P.; Lacey, J. A.; Lien, S. A.; Purushothaman, S.; Speidell, J. L. Liquid crystal alignment on carbonaceous surfaces with orientational order. Science 2001, 292, 2299–2302.

    Article  Google Scholar 

  25. Zhang, D. F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X. D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225.

    Article  Google Scholar 

  26. Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261–1267.

    Article  Google Scholar 

  27. Li, M. H.; Keller, P.; Li, B., Wang, X.; Brunet, M. Lightdriven side-on nematic elastomer actuators. Adv. Mater. 2003, 15, 569–572.

    Article  Google Scholar 

  28. Li, M. H.; Auroy, P.; Keller, P. An azobenzene-containing side-on liquid crystal polymer. Liq. Cryst. 2000, 27, 1497–1502.

    Article  Google Scholar 

  29. Yang, K. L.; Cadwell, K.; Abbott, N. L. Mechanistic study of the anchoring behavior of liquid crystals supported on metal salts and their orientational responses to dimethyl methylphosphonate. J. Phys. Chem. B 2004, 108, 20180–20186.

    Article  Google Scholar 

  30. Barmatov, E. B.; Medvedev, A. S.; Pebalk, D. A.; Barmatova, M. B.; Nikonorova, N. A.; Zezin, S. B.; Shibaev, V. P. The effect of silver nanoparticles on the phase state of comb-shaped liquid crystalline polymers with cyanobiphenyl mesogenic groups. Polym. Sci. Ser. A 2006, 48, 665–675.

    Article  Google Scholar 

  31. Ho, J. Y.; Huang, M. H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J. Phys. Chem. C 2009, 113, 14159–14164.

    Article  Google Scholar 

  32. Shang, Y.; Guo, L. Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing. Adv. Sci. 2015, 2, 1500140.

    Article  Google Scholar 

  33. Urbanski, M.; Mirzaei, J.; Hegmann, T.; Kitzerow, H. S. Nanoparticle doping in nematic liquid crystals: Distinction between surface and bulk effects by numerical simulations. ChemPhysChem 2014, 15, 1395–1404.

    Article  Google Scholar 

  34. Wang, W.; Sun, X. M.; Wu, W.; Peng, H. S.; Yu, Y. L. Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. Angew. Chem., Int. Ed. 2012, 51, 4722–4725.

    Article  Google Scholar 

  35. Sun, X. M.; Wang, W.; Qiu, L. B.; Guo, W. H.; Yu, Y. L.; Peng, H. S. Unusual reversible photomechanical actuation in polymer/nanotube composites. Angew. Chem., Int. Ed. 2012, 51, 8520–8524.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huai Yang or Lin Guo.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Shang, Y., Yu, L. et al. Facet-dependent Cu2O nanocrystals in manipulating alignment of liquid crystals and photomechanical behaviors. Nano Res. 9, 2581–2589 (2016). https://doi.org/10.1007/s12274-016-1144-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1144-4

Keywords

Navigation