Skip to main content
Log in

Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) with flower-like and frame morphologies were synthesized from CuS, a remarkable transition-metal sulfide. We introduced two kinds of CuS NPs into a nematic liquid crystal (LC) 4-cyano-4'-n-pentylbiphenyl (5CB) and investigated the morphology- and concentration-dependent alignment and electro-optic (E-O) effects of CuS NPs on 5CB. A trace amount of flower-like CuS NPs induced a uniform homeotropic orientation of LC molecules; this is attributable to the obtained desirable compact nanosheet structure. Moreover, both flower-like and frame CuS NPs induced a remarkable improvement in the E-O properties of 5CB, and the flower-like CuS/5CB system exhibited a better performance. The doped CuS NPs in the LC host suppressed the shielding effect and strengthened the electric field, resulting in outstanding E-O properties. At a doping concentration of 0.05 wt.%, CuS NPs were well-dispersed and achieved the optimum E-O performance. This study provides a novel method for inducing a uniform orientation and enhanced E-O properties of LC molecules by doping with extraordinary CuS NPs, leading to potential applications in establishing flexible LC displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qi, H.; Hegmann, T. Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J. Mater. Chem. 2008, 18, 3288–3294.

    Article  Google Scholar 

  2. Bisoyi, H. K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306–319.

    Article  Google Scholar 

  3. Rahimi, M.; Roberts, T. F.; Armas-Pérez, J. C.; Wang, X. G.; Bukusoglu, E.; Abbott, N. L.; de Pablo, J. J. Nanoparticle self-assembly at the interface of liquid crystal droplets. Proc. Natl. Acad. Sci. USA 2015, 112, 5297–5302.

    Article  Google Scholar 

  4. Coursault, D.; Grand, J.; Zappone, B.; Ayeb, H.; Lévi, G.; Félidj, N.; Lacaze, E. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv. Mater. 2012, 24, 1461–1465.

    Article  Google Scholar 

  5. Matt, B.; Pondman, K. M.; Asshoff, S. J.; Ten Haken, B.; Fleury, B.; Katsonis, N. Soft magnets from the self-organization of magnetic nanoparticles in twisted liquid crystals. Angew. Chem., Int. Ed. 2014, 53, 12446–12450.

    Google Scholar 

  6. Kim, N.; Kim, D. Y.; Park, M.; Choi, Y. J.; Kim, S.; Lee, S. H.;. Jeong, K. U. Asymmetric organic–inorganic hybrid giant molecule: Hierarchical smectic phase induced from POSS nanoparticles by addition of nematic liquid crystals. J. Phys. Chem. C 2015, 119, 766–774.

    Article  Google Scholar 

  7. Chung, Y. F.; Chen, M. Z.; Yang, S. H.; Jeng, S. C. Tunable surface wettability of ZnO nanoparticle arrays for controlling the alignment of liquid crystals. ACS Appl. Mater. Interfaces 2015, 7, 9619–9624.

    Article  Google Scholar 

  8. Zhao, D. Y.; Zhou, W.; Cui, X. P.; Tian, Y.; Guo, L.; Yang, H. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv. Mater. 2011, 23, 5779–5784.

    Article  Google Scholar 

  9. Zhou, W.; Lin, L. J.; Zhao, D. Y.; Guo, L. Synthesis of nickel bowl-like nanoparticles and their doping for inducing planar alignment of a nematic liquid crystal. J. Am. Chem. Soc. 2011, 133, 8389–8391.

    Article  Google Scholar 

  10. Liu, H. S.; Jeng, S. C. Liquid crystal alignment by polyhedral oligomeric silsesquioxane (POSS)-polyimide nanocomposites. Opt. Mater. 2013, 35, 1418–1421.

    Article  Google Scholar 

  11. Liu, B. Y.; Chen, L. J. Role of surface hydrophobicity in pretilt angle control of polymer-stabilized liquid crystal alignment systems. J. Phys. Chem. C 2013, 117, 13474–13478.

    Article  Google Scholar 

  12. Ahmad, F.; Jamil, M.; Lee, J. W.; Jeon, Y. J. Magnetically driven vertical alignment of liquid crystals by ferromagnetic particles. Liq. Cryst. 2015, 42, 233–239.

    Article  Google Scholar 

  13. Goel, P.; Upadhyay, P. L.; Biradar, A. M. Induced dielectric relaxation and enhanced electro-optic parameters in Ni nanoparticles-ferroelectric liquid crystal dispersions. Liq. Cryst. 2013, 40, 45–51.

    Article  Google Scholar 

  14. Zhang, Y.; Liu, Q. K.; Mundoor, H.; Yuan, Y.; Smalyukh, I. I. Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers. ACS Nano 2015, 9, 3097–3108.

    Article  Google Scholar 

  15. Ha, Y. S.; Kim, H. J.; Park, H. G.; Seo, D. S. Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping. Opt. Exp. 2012, 20, 6448–6455.

    Article  Google Scholar 

  16. Nishida, N.; Shiraishi, Y.; Kobayashi, S.; Toshima, N. Fabrication of liquid crystal sol containing capped Ag–Pd bimetallic nanoparticles and their electro-optic properties. J. Phys. Chem. C 2008, 112, 20284–20290.

    Article  Google Scholar 

  17. Marino, L.; Marino, S.; Wang, D.; Bruno, E.; Scaramuzza, N. Nonvolatile memory effects in an orthoconic smectic liquid crystal mixture doped with polymer-capped gold nanoparticles. Soft Matter 2014, 10, 3842–3849.

    Article  Google Scholar 

  18. Urbanski, M.; Lagerwall, J. P. F. Nanoparticles dispersed in liquid crystals: Impact on conductivity, low-frequency relaxation and electro-optical performance. J. Mater. Chem. C 2016, 4, 3485–3491.

    Article  Google Scholar 

  19. Chung, H. K.; Park, H. G.; Ha, Y. S.; Han, J. M.; Lee, J. W.; Seo, D. S. Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion. Liq. Cryst. 2013, 40, 632–638.

    Article  Google Scholar 

  20. Wang, L.; He, W. L.; Xiao, X.; Meng, F. G.; Zhang, Y.; Yang, P. Y.; Wang, L. P.; Xiao, J. M.; Yang, H.; Lu, Y. F. Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles. Small 2012, 8, 2189–2193.

    Article  Google Scholar 

  21. Chandran, A.; Prakash, J.; Naik, K. K.; Srivastava, A. K.; Dabrowski, R.; Czerwinski, M.; Biradar, A. M. Preparation and characterization of MgO nanoparticles/ferroelectric liquid crystal composites for faster display devices with improved contrast. J. Mater. Chem. C 2014, 2, 1844–1853.

    Article  Google Scholar 

  22. Goel, P.; Arora, M.; Biradar, A. M. Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling. J. Appl. Phys. 2014, 115, 124905.

    Article  Google Scholar 

  23. Gupta, S. K.; Singh, D. P.; Manohar, R. SWCNT doped ferroelectric liquid crystal: The electro-optical properties with enhanced dipolar contribution. Curr. Appl. Phys. 2013, 13, 684–687.

    Article  Google Scholar 

  24. García-García, A.; Vergaz, R.; Algorri, J. F.; Quintana, X.; Otón, J. M. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes. Beilstein J. Nanotechnol. 2015, 6, 396–403.

    Article  Google Scholar 

  25. Lee, W. K.; Choi, Y. S.; Kang, Y. G.; Sung, J.; Seo, D. S.; Park, C. Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks. Adv. Funct. Mater. 2011, 21, 3843–3850.

    Article  Google Scholar 

  26. Kinkead, B.; Hegmann, T. Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture. J. Mater. Chem. 2010, 20, 448–458.

    Article  Google Scholar 

  27. Mirzaei, J.; Reznikov, M.; Hegmann, T. Quantum dots as liquid crystal dopants. J. Mater. Chem. 2012, 22, 22350–22365.

    Article  Google Scholar 

  28. Lee, W. K.; Hwang, S. J.; Cho, M. J.; Park, H. G.; Han, J. W.; Song, S.; Jang, J. H.; Seo, D. S. CIS-ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale 2013, 5, 193–199.

    Article  Google Scholar 

  29. Šetkus, A.; Galdikas, A.; Mironas, A.; Šimkiene, I.; Ancutiene, I.; Janickis, V.; Kaciulis, S.; Mattogno, G.; Ingo, G. M. Properties of CuxS thin film based structures: Influence on the sensitivity to ammonia at room temperatures. Thin Solid Films 2001, 391, 275–281.

    Article  Google Scholar 

  30. Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Pal, T. Evolution of hierarchical hexagonal stacked plates of CuS from liquid–liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ. Sci. Technol. 2010, 44, 6313–6318.

    Article  Google Scholar 

  31. Riha, S. C.; Johnson, D. C.; Prieto, A. L. Cu2Se nanoparticles with tunable electronic properties due to a controlled solidstate phase transition driven by copper oxidation and cationic conduction. J. Am. Chem. Soc. 2011, 133, 1383–1390.

    Article  Google Scholar 

  32. Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Hwang, B. J.; Chen, B. J. Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J. Mater. Chem. 2010, 20, 6638–6645.

    Article  Google Scholar 

  33. Ma, Y. R.; Zhou, W.; Cao, W.; Zheng, J. L.; Guo, L. Preparation of hierarchical Ni@CuS composites and the application of the enhanced catalysis for 4-nitrophenol reduction. Acta Phys.-Chim. Sin. 2015, 31, 1949–1955.

    Google Scholar 

  34. Hwang, S. J.; Jeng, S. C.; Yang, C. Y.; Kuo, C. W.; Liao, C. C. Characteristics of nanoparticle-doped homeotropic liquid crystal devices. J. Phys. D: Appl. Phys. 2009, 42, 025102.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51203005 and 51673008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongyu Zhao, Wei Zhou or Lin Guo.

Electronic supplementary material

12274_2016_1321_MOESM1_ESM.pdf

Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Ma, Y., Zhao, D. et al. Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. 10, 618–625 (2017). https://doi.org/10.1007/s12274-016-1321-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1321-5

Keywords

Navigation