Skip to main content
Log in

General synthesis of sponge-like ultrafine nanoporous metals by dealloying in citric acid

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A general method is proposed to synthesize ultrafine nanoporous Cu, Ag, and Ni with novel sponge-like morphologies, high porosities, and large surface areas. The materials are produced by dealloying Mg65M25Y10 (M = Cu, Ag, and Ni) metallic glasses in citric acid. Citric acid played a key role due to its capping effect, which reduced the surface diffusion of metals. A structural model consistent with the sponge-like morphology was constructed to calculate the porosity and the surface area. The mechanism of the dealloying process in citric acid, involving ligament formation and coarsening, was illustrated. The mechanism was capable of explaining the experimental trends of dealloying, especially the morphology. A glucose sensor, which can be further developed into a high-precision real-time glucose monitor for medical use, was constructed using sponge-like nanoporous copper. Our findings are not only relevant to understanding the dealloying mechanism of metallic glasses, but also provide promising materials for multiple applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, L. Y.; Fujita, T.; Ding, Y.; Chen, M. W. A three-dimensional gold-decorated nanoporous copper core–shell composite for electrocatalysis and nonenzymatic biosensing. Adv. Funct. Mater. 2010, 20, 2279–2285.

    Article  Google Scholar 

  2. Xu, C. X.; Wang, L. Q.; Wang, R. Y.; Wang, K.; Zhang, Y.; Tian, F.; Ding, Y. Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance. Adv. Mater. 2009, 21, 2165–2169.

    Article  Google Scholar 

  3. Gu, J.; Lan, G. X.; Jiang, Y. Y.; Xu, Y. S.; Zhu, W.; Jin, C. H.; Zhang, Y. W. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Res. 2015, 8, 1480–1496.

    Article  Google Scholar 

  4. Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365–1372.

    Article  Google Scholar 

  5. Li, R.; Liu, X. J.; Wang, H.; Wu, Y.; Chu, X. M.; Lu, Z. P. Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering. Corros. Sci. 2014, 84, 159–164.

    Article  Google Scholar 

  6. Kramer, D.; Viswanath, R. N.; Weissmuller, J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett. 2004, 4, 793–796.

    Article  Google Scholar 

  7. Chen, L. Y.; Yu, J. S.; Fujita, T.; Chen, M. W. Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 2009, 19, 1221–1226.

    Article  Google Scholar 

  8. Qiu, H. J.; Kang, J. L.; Liu, P.; Hirata, A.; Fujita, T.; Chen, M. W. Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. J. Power Sources 2014, 247, 896–905.

    Article  Google Scholar 

  9. Pugh, D. V.; Durson, A.; Corcoran, S. G. Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25. J. Mater. Res. 2003, 18, 216–221.

    Article  Google Scholar 

  10. Thorp, J. C.; Sieradzki, K.; Tang, L.; Crozier, P. A.; Misra, A.; Nastasi, M.; Mitlin, D.; Picraux, S. T. Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1−x . Appl. Phys. Lett. 2006, 88, 033110.

    Article  Google Scholar 

  11. Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: “Ancient Technology”. Adv. Mater. 2004, 16, 1897–1900.

    Article  Google Scholar 

  12. Qian, L. H.; Chen, M. W. Ultrafine nanoporous gold by lowtemperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 2007, 91, 083105.

    Article  Google Scholar 

  13. Wang, K.; Weissmuller, J. Composites of nanoporous gold and polymer. Adv. Mater. 2013, 25, 1280–1284.

    Article  Google Scholar 

  14. Hakamada, M.; Nakano, H.; Furukawa, T.; Takahashi, M.; Mabuchi, M. Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J. Phys. Chem. C 2010, 114, 868–873.

    Article  Google Scholar 

  15. Zhang, M.; Jorge Junior, A. M.; Pang, S. J.; Zhang, T.; Yavari, A. R. Fabrication of nanoporous silver with open pores. Scripta Mater. 2015, 100, 21–23.

    Article  Google Scholar 

  16. Aburada, T.; Fitz-Gerald, J. M.; Scully, J. R. Synthesis of nanoporous copper by dealloying of Al-Cu-Mg amorphous alloys in acidic solution: The effect of nickel. Corros. Sci. 2011, 53, 1627–1632.

    Article  Google Scholar 

  17. Li, J.; Jiang, H. W.; Yu, N.; Xu, C. X.; Geng, H. R. Fabrication and characterization of bulk nanoporous copper by dealloying Al–Cu alloy slices. Corros. Sci. 2015, 90, 216–222.

    Article  Google Scholar 

  18. Tuan, N. T.; Park, J.; Lee, J.; Gwak, J.; Lee, D. Synthesis of nanoporous Cu films by dealloying of electrochemically deposited Cu–Zn alloy films. Corros. Sci. 2014, 80, 7–11.

    Article  Google Scholar 

  19. Sun, L.; Chien, C.-L.; Searson, P. C. Fabrication of nanoporous nickel by electrochemical dealloying. Chem. Mater. 2004, 16, 3125–3129.

    Article  Google Scholar 

  20. Hakamada, M.; Mabuchi, M. Preparation of nanoporous Ni and Ni–Cu by dealloying of rolled Ni–Mn and Ni–Cu–Mn alloys. J. Alloy Compd. 2009, 485, 583–587.

    Article  Google Scholar 

  21. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

    Article  Google Scholar 

  22. Erlebacher, J.; Sieradzki, K. Pattern formation during dealloying. Scripta Mater. 2003, 49, 991–996.

    Article  Google Scholar 

  23. Erlebacher, J. An atomistic description of dealloying: Porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 2004, 151, C614–C626.

    Article  Google Scholar 

  24. Luo, X. K.; Li, R.; Liu, Z. Q.; Huang, L.; Shi, M. J.; Xu, T.; Zhang, T. Three-dimensional nanoporous copper with high surface area by dealloying Mg–Cu–Y metallic glasses. Mater. Lett. 2012, 76, 96–99.

    Article  Google Scholar 

  25. Luo, X. K.; Li, R.; Huang, L.; Zhang, T. Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses. Corros. Sci. 2013, 67, 100–108.

    Article  Google Scholar 

  26. Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M.; Hamza, A. V.; Maier, S. A. Nanoporous plasmonic metamaterials. Adv. Mater. 2008, 20, 1211–1217.

    Article  Google Scholar 

  27. Erlebacher, J. Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys. Rev. Lett. 2011, 106, 225504.

    Article  Google Scholar 

  28. Kilin, D. S.; Prezhdo, O. V.; Xia, Y. N. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett. 2008, 458, 113–116.

    Article  Google Scholar 

  29. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  30. Wang, J. Q.; Yu, P.; Bai, H. Y. Minor addition induced enhancement of strength of Mg-based bulk metallic glass. J. Non-Cryst. Solids 2008, 354, 5440–5443.

    Article  Google Scholar 

  31. Parida, S.; Kramer, D.; Volkert, C. A.; Rösner, H.; Erlebacher, J.; Weissmüller, J. Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett. 2006, 97, 035504.

    Article  Google Scholar 

  32. Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc. 2003, 125, 7772–7773.

    Article  Google Scholar 

  33. Alonso, C.; Salvarezza, R. C.; Vara, J. M.; Arvia, A. J. The surface diffusion of gold atoms on gold electrodes in acid solution and its dependence on the presence of foreign adsorbates. Electrochim. Acta 1990, 35, 1331–1336.

    Article  Google Scholar 

  34. Andreason, G.; Nazzarro, M.; Ramirez, J.; Salvarezza, R. C.; Arvia, A. J. Kinetics of particle coarsening at gold electrode/ electrolyte solution interfaces followed by in situ scanning tunneling microscopy. J. Electrochem. Soc. 1996, 143, 466–471.

    Article  Google Scholar 

  35. Seebauer, E. G.; Allen, C. E. Estimating surface diffusion coefficients. Prog. Surf. Sci. 1995, 49, 265–330.

    Article  Google Scholar 

  36. Zhang, Q.; Zhang, Z. H. On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution. Phys. Chem. Chem. Phys. 2010, 12, 1453–1472.

    Article  Google Scholar 

  37. Huang, T.-K.; Lin, K.-W.; Tung, S.-P.; Cheng, T.-M.; Chang, I. C.; Hsieh, Y.-Z.; Lee, C.-Y.; Chiu, H.-T. Glucose sensing by electrochemically grown copper nanobelt electrode. J. Electroanal. Chem. 2009, 636, 123–127.

    Article  Google Scholar 

  38. Xu, Q.; Zhao, Y.; Xu, J. Z.; Zhu, J.-J. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuators B: Chem. 2006, 114, 379–386.

    Article  Google Scholar 

  39. Joo, S.; Park, S.; Chuang, T. D.; Kim, H. C. Integration of a nanoporous platinum thin film into a microfluidic system for non-enzymatic electrochemical glucose sensing. Anal. Sci. 2007, 23, 277–281.

    Article  Google Scholar 

  40. Chou, C.-H.; Chen, J.-C.; Tai, C.-C.; Sun, I. W.; Zen, J.-M. A nonenzymatic glucose sensor using nanoporous platinum electrodes prepared by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid. Electroanalysis 2008, 20, 771–775.

    Article  Google Scholar 

  41. Lee, Y.-J.; Park, D.-J.; Park, J.-Y.; Kim, Y. Fabrication and optimization of a nanoporous platinum electrode and a nonenzymatic glucose micro-sensor on silicon. Sensors 2008, 8, 6154–6164.

    Article  Google Scholar 

  42. Xia, Y.; Huang, W.; Zheng, J. F.; Niu, Z. J.; Li, Z. L. Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens. Bioelectron. 2011, 26, 3555–3561.

    Article  Google Scholar 

  43. Chen, L. Y.; Lang, X. Y.; Fujita, T.; Chen, M. W. Nanoporous gold for enzyme-free electrochemical glucose sensors. Scripta Mater. 2011, 65, 17–20.

    Article  Google Scholar 

  44. Qiu, H. J.; Huang, X. R. Effects of Pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor. J. Electroanal. Chem. 2010, 643, 39–45.

    Article  Google Scholar 

  45. Holt-Hindle, P.; Nigro, S.; Asmussen, M.; Chen, A. C. Amperometric glucose sensor based on platinum–iridium nanomaterials. Electrochem. Commun. 2008, 10, 1438–1441.

    Article  Google Scholar 

  46. Sattayasamitsathit, S.; Thavarungkul, P.; Thammakhet, C.; Limbut, W.; Numnuam, A.; Buranachai, C.; Kanatharana, P. Fabrication of nanoporous copper film for electrochemical detection of glucose. Electroanalysis 2009, 21, 2371–2377.

    Article  Google Scholar 

  47. Liu, A. H.; Geng, H. R.; Xu, C. X.; Qiu, H. J. A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing. Anal. Chim. Acta 2011, 703, 172–178.

    Article  Google Scholar 

  48. Zhao, Y. X.; Li, Y. P.; He, Z. Y.; Yan, Z. F. Facile preparation of Cu–Cu2O nanoporous nanoparticles as a potential catalyst for non-enzymatic glucose sensing. RSC Adv. 2013, 3, 2178–2181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Pang, S., Jin, Y. et al. General synthesis of sponge-like ultrafine nanoporous metals by dealloying in citric acid. Nano Res. 9, 2467–2477 (2016). https://doi.org/10.1007/s12274-016-1133-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1133-7

Keywords

Navigation