Nano Research

, Volume 9, Issue 8, pp 2467–2477 | Cite as

General synthesis of sponge-like ultrafine nanoporous metals by dealloying in citric acid

  • Hongjie Xu
  • Shujie Pang
  • Yu Jin
  • Tao ZhangEmail author
Research Article


A general method is proposed to synthesize ultrafine nanoporous Cu, Ag, and Ni with novel sponge-like morphologies, high porosities, and large surface areas. The materials are produced by dealloying Mg65M25Y10 (M = Cu, Ag, and Ni) metallic glasses in citric acid. Citric acid played a key role due to its capping effect, which reduced the surface diffusion of metals. A structural model consistent with the sponge-like morphology was constructed to calculate the porosity and the surface area. The mechanism of the dealloying process in citric acid, involving ligament formation and coarsening, was illustrated. The mechanism was capable of explaining the experimental trends of dealloying, especially the morphology. A glucose sensor, which can be further developed into a high-precision real-time glucose monitor for medical use, was constructed using sponge-like nanoporous copper. Our findings are not only relevant to understanding the dealloying mechanism of metallic glasses, but also provide promising materials for multiple applications.


sponge-like nanoporous metals citric acid surface diffusion metallic glasses ultrafine structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1133_MOESM1_ESM.pdf (4.6 mb)
Supplementary material, approximately 4674 KB.


  1. [1]
    Chen, L. Y.; Fujita, T.; Ding, Y.; Chen, M. W. A three-dimensional gold-decorated nanoporous copper core–shell composite for electrocatalysis and nonenzymatic biosensing. Adv. Funct. Mater. 2010, 20, 2279–2285.CrossRefGoogle Scholar
  2. [2]
    Xu, C. X.; Wang, L. Q.; Wang, R. Y.; Wang, K.; Zhang, Y.; Tian, F.; Ding, Y. Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance. Adv. Mater. 2009, 21, 2165–2169.CrossRefGoogle Scholar
  3. [3]
    Gu, J.; Lan, G. X.; Jiang, Y. Y.; Xu, Y. S.; Zhu, W.; Jin, C. H.; Zhang, Y. W. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Res. 2015, 8, 1480–1496.CrossRefGoogle Scholar
  4. [4]
    Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365–1372.CrossRefGoogle Scholar
  5. [5]
    Li, R.; Liu, X. J.; Wang, H.; Wu, Y.; Chu, X. M.; Lu, Z. P. Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering. Corros. Sci. 2014, 84, 159–164.CrossRefGoogle Scholar
  6. [6]
    Kramer, D.; Viswanath, R. N.; Weissmuller, J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett. 2004, 4, 793–796.CrossRefGoogle Scholar
  7. [7]
    Chen, L. Y.; Yu, J. S.; Fujita, T.; Chen, M. W. Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 2009, 19, 1221–1226.CrossRefGoogle Scholar
  8. [8]
    Qiu, H. J.; Kang, J. L.; Liu, P.; Hirata, A.; Fujita, T.; Chen, M. W. Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. J. Power Sources 2014, 247, 896–905.CrossRefGoogle Scholar
  9. [9]
    Pugh, D. V.; Durson, A.; Corcoran, S. G. Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25. J. Mater. Res. 2003, 18, 216–221.CrossRefGoogle Scholar
  10. [10]
    Thorp, J. C.; Sieradzki, K.; Tang, L.; Crozier, P. A.; Misra, A.; Nastasi, M.; Mitlin, D.; Picraux, S. T. Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1−x. Appl. Phys. Lett. 2006, 88, 033110.CrossRefGoogle Scholar
  11. [11]
    Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: “Ancient Technology”. Adv. Mater. 2004, 16, 1897–1900.CrossRefGoogle Scholar
  12. [12]
    Qian, L. H.; Chen, M. W. Ultrafine nanoporous gold by lowtemperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 2007, 91, 083105.CrossRefGoogle Scholar
  13. [13]
    Wang, K.; Weissmuller, J. Composites of nanoporous gold and polymer. Adv. Mater. 2013, 25, 1280–1284.CrossRefGoogle Scholar
  14. [14]
    Hakamada, M.; Nakano, H.; Furukawa, T.; Takahashi, M.; Mabuchi, M. Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J. Phys. Chem. C 2010, 114, 868–873.CrossRefGoogle Scholar
  15. [15]
    Zhang, M.; Jorge Junior, A. M.; Pang, S. J.; Zhang, T.; Yavari, A. R. Fabrication of nanoporous silver with open pores. Scripta Mater. 2015, 100, 21–23.CrossRefGoogle Scholar
  16. [16]
    Aburada, T.; Fitz-Gerald, J. M.; Scully, J. R. Synthesis of nanoporous copper by dealloying of Al-Cu-Mg amorphous alloys in acidic solution: The effect of nickel. Corros. Sci. 2011, 53, 1627–1632.CrossRefGoogle Scholar
  17. [17]
    Li, J.; Jiang, H. W.; Yu, N.; Xu, C. X.; Geng, H. R. Fabrication and characterization of bulk nanoporous copper by dealloying Al–Cu alloy slices. Corros. Sci. 2015, 90, 216–222.CrossRefGoogle Scholar
  18. [18]
    Tuan, N. T.; Park, J.; Lee, J.; Gwak, J.; Lee, D. Synthesis of nanoporous Cu films by dealloying of electrochemically deposited Cu–Zn alloy films. Corros. Sci. 2014, 80, 7–11.CrossRefGoogle Scholar
  19. [19]
    Sun, L.; Chien, C.-L.; Searson, P. C. Fabrication of nanoporous nickel by electrochemical dealloying. Chem. Mater. 2004, 16, 3125–3129.CrossRefGoogle Scholar
  20. [20]
    Hakamada, M.; Mabuchi, M. Preparation of nanoporous Ni and Ni–Cu by dealloying of rolled Ni–Mn and Ni–Cu–Mn alloys. J. Alloy Compd. 2009, 485, 583–587.CrossRefGoogle Scholar
  21. [21]
    Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.CrossRefGoogle Scholar
  22. [22]
    Erlebacher, J.; Sieradzki, K. Pattern formation during dealloying. Scripta Mater. 2003, 49, 991–996.CrossRefGoogle Scholar
  23. [23]
    Erlebacher, J. An atomistic description of dealloying: Porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 2004, 151, C614–C626.CrossRefGoogle Scholar
  24. [24]
    Luo, X. K.; Li, R.; Liu, Z. Q.; Huang, L.; Shi, M. J.; Xu, T.; Zhang, T. Three-dimensional nanoporous copper with high surface area by dealloying Mg–Cu–Y metallic glasses. Mater. Lett. 2012, 76, 96–99.CrossRefGoogle Scholar
  25. [25]
    Luo, X. K.; Li, R.; Huang, L.; Zhang, T. Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses. Corros. Sci. 2013, 67, 100–108.CrossRefGoogle Scholar
  26. [26]
    Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M.; Hamza, A. V.; Maier, S. A. Nanoporous plasmonic metamaterials. Adv. Mater. 2008, 20, 1211–1217.CrossRefGoogle Scholar
  27. [27]
    Erlebacher, J. Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys. Rev. Lett. 2011, 106, 225504.CrossRefGoogle Scholar
  28. [28]
    Kilin, D. S.; Prezhdo, O. V.; Xia, Y. N. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett. 2008, 458, 113–116.CrossRefGoogle Scholar
  29. [29]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  30. [30]
    Wang, J. Q.; Yu, P.; Bai, H. Y. Minor addition induced enhancement of strength of Mg-based bulk metallic glass. J. Non-Cryst. Solids 2008, 354, 5440–5443.CrossRefGoogle Scholar
  31. [31]
    Parida, S.; Kramer, D.; Volkert, C. A.; Rösner, H.; Erlebacher, J.; Weissmüller, J. Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett. 2006, 97, 035504.CrossRefGoogle Scholar
  32. [32]
    Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc. 2003, 125, 7772–7773.CrossRefGoogle Scholar
  33. [33]
    Alonso, C.; Salvarezza, R. C.; Vara, J. M.; Arvia, A. J. The surface diffusion of gold atoms on gold electrodes in acid solution and its dependence on the presence of foreign adsorbates. Electrochim. Acta 1990, 35, 1331–1336.CrossRefGoogle Scholar
  34. [34]
    Andreason, G.; Nazzarro, M.; Ramirez, J.; Salvarezza, R. C.; Arvia, A. J. Kinetics of particle coarsening at gold electrode/ electrolyte solution interfaces followed by in situ scanning tunneling microscopy. J. Electrochem. Soc. 1996, 143, 466–471.CrossRefGoogle Scholar
  35. [35]
    Seebauer, E. G.; Allen, C. E. Estimating surface diffusion coefficients. Prog. Surf. Sci. 1995, 49, 265–330.CrossRefGoogle Scholar
  36. [36]
    Zhang, Q.; Zhang, Z. H. On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution. Phys. Chem. Chem. Phys. 2010, 12, 1453–1472.CrossRefGoogle Scholar
  37. [37]
    Huang, T.-K.; Lin, K.-W.; Tung, S.-P.; Cheng, T.-M.; Chang, I. C.; Hsieh, Y.-Z.; Lee, C.-Y.; Chiu, H.-T. Glucose sensing by electrochemically grown copper nanobelt electrode. J. Electroanal. Chem. 2009, 636, 123–127.CrossRefGoogle Scholar
  38. [38]
    Xu, Q.; Zhao, Y.; Xu, J. Z.; Zhu, J.-J. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuators B: Chem. 2006, 114, 379–386.CrossRefGoogle Scholar
  39. [39]
    Joo, S.; Park, S.; Chuang, T. D.; Kim, H. C. Integration of a nanoporous platinum thin film into a microfluidic system for non-enzymatic electrochemical glucose sensing. Anal. Sci. 2007, 23, 277–281.CrossRefGoogle Scholar
  40. [40]
    Chou, C.-H.; Chen, J.-C.; Tai, C.-C.; Sun, I. W.; Zen, J.-M. A nonenzymatic glucose sensor using nanoporous platinum electrodes prepared by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid. Electroanalysis 2008, 20, 771–775.CrossRefGoogle Scholar
  41. [41]
    Lee, Y.-J.; Park, D.-J.; Park, J.-Y.; Kim, Y. Fabrication and optimization of a nanoporous platinum electrode and a nonenzymatic glucose micro-sensor on silicon. Sensors 2008, 8, 6154–6164.CrossRefGoogle Scholar
  42. [42]
    Xia, Y.; Huang, W.; Zheng, J. F.; Niu, Z. J.; Li, Z. L. Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens. Bioelectron. 2011, 26, 3555–3561.CrossRefGoogle Scholar
  43. [43]
    Chen, L. Y.; Lang, X. Y.; Fujita, T.; Chen, M. W. Nanoporous gold for enzyme-free electrochemical glucose sensors. Scripta Mater. 2011, 65, 17–20.CrossRefGoogle Scholar
  44. [44]
    Qiu, H. J.; Huang, X. R. Effects of Pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor. J. Electroanal. Chem. 2010, 643, 39–45.CrossRefGoogle Scholar
  45. [45]
    Holt-Hindle, P.; Nigro, S.; Asmussen, M.; Chen, A. C. Amperometric glucose sensor based on platinum–iridium nanomaterials. Electrochem. Commun. 2008, 10, 1438–1441.CrossRefGoogle Scholar
  46. [46]
    Sattayasamitsathit, S.; Thavarungkul, P.; Thammakhet, C.; Limbut, W.; Numnuam, A.; Buranachai, C.; Kanatharana, P. Fabrication of nanoporous copper film for electrochemical detection of glucose. Electroanalysis 2009, 21, 2371–2377.CrossRefGoogle Scholar
  47. [47]
    Liu, A. H.; Geng, H. R.; Xu, C. X.; Qiu, H. J. A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing. Anal. Chim. Acta 2011, 703, 172–178.CrossRefGoogle Scholar
  48. [48]
    Zhao, Y. X.; Li, Y. P.; He, Z. Y.; Yan, Z. F. Facile preparation of Cu–Cu2O nanoporous nanoparticles as a potential catalyst for non-enzymatic glucose sensing. RSC Adv. 2013, 3, 2178–2181.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations