Skip to main content
Log in

An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The biodistribution of gold nanoparticles (AuNPs) is closely related to toxicological effects and is of great concern because of their potential application in diverse biomedical areas. However, with the discovery of novel anatomic and histological structures for fluid transport, the underlying mechanisms involved in the in vivo transport and biodistribution of AuNPs require further in-depth investigations. In the current study, we investigated the biodistribution of 10-nm AuNPs in rats after intervaginal space injection (ISI) in the tarsal tunnel, where a focal point of tendons, vessels, and nerve fibers may optimally connect to other remote connective tissues. The intravenous injection (IVI) of AuNPs served as a control. The blood and organs were collected at 5, 15, and 30 min and at 1, 4, 12, and 24 h after injection for quantitative analysis of Au distribution with inductively coupled plasma mass spectrometry (ICP-MS). IVI and ISI yielded significantly different results: The AuNP content in the blood after ISI was much lower than that after IVI; was similar in the lungs, heart, and intestines; and was higher in the skin and muscle. These findings were supported by the ratios of AuNP content and relative organ AuNP distribution proportions. Our results demonstrated a fast, direct, and the circulation-independent AuNP–organ transport pathway, which may improve our understanding of physiological and pathological biodistribution processes in biological systems. Furthermore, these results provide novel insights into the in vivo transport and biodistribution of AuNPs, which may lead to novel and efficient therapeutic and administration strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24–46.

    Article  Google Scholar 

  2. Liu, Y.; Chen, C. Y.; Qian, P. X.; Lu, X. F.; Sun, B. Y.; Zhang, X.; Wang, L. M.; Gao, X. F.; Li, H.; Chen, Z. Y. et al. Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nat. Commun. 2015, 6, 5988.

    Article  Google Scholar 

  3. Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.

    Article  Google Scholar 

  4. Cobley, C. M.; Chen, J. Y.; Cho, E. C.; Wang, L. V.; Xia, Y. N. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44–56.

    Article  Google Scholar 

  5. Wang, P. P.; Yu, Q. Y.; Long, Y.; Hu, S.; Zhuang, J.; Wang, X. Multivalent assembly of ultrasmall nanoparticles: One-, two-, and three-dimensional architectures of 2 nm gold nanoparticles. Nano Res. 2012, 5, 283–291.

    Article  Google Scholar 

  6. Dreaden, E. C.; Mackey, M. A.; Huang, X. H.; Kang, B.; El-Sayed, M. A. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 2011, 40, 3391–3404.

    Article  Google Scholar 

  7. Dobrovolskaia, M. A.; McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007, 2, 469–478.

    Article  Google Scholar 

  8. Chen, P. C.; Mwakwari, S. C.; Oyelere, A. K. Gold nanoparticles: From nano medicine to nanosensing. Nanotechnol. Sci. Appl. 2008, 1, 45–65.

    Google Scholar 

  9. Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.

    Article  Google Scholar 

  10. Yah, C. S.; Simate, G. S.; Iyuke, S. E. Nanoparticles toxicity and their routes of exposures. Pak. J. Pharm. Sci. 2012, 25, 477–491.

    Google Scholar 

  11. Yah, C. S. The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed. Res. 2013, 24, 400–413.

    Google Scholar 

  12. De Jong, W. H.; Hagens, W. I.; Krystek, P.; Burger, M. C.; Sips, A. J. A. M.; Geertsma, R. E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008, 29, 1912–1919.

    Article  Google Scholar 

  13. Zhang, X. D.; Wu, H. Y.; Wu, D.; Wang, Y. Y.; Chang, J. H.; Zhai, Z. B.; Meng, A. M.; Liu, P. X.; Zhang, L. A.; Fan, F. Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine 2010, 5, 771–781.

    Article  Google Scholar 

  14. Wang, L. M.; Li, Y. F.; Zhou, L. J.; Liu, Y.; Meng, L.; Zhang, K.; Wu, X. C.; Zhang, L. L.; Li, B.; Chen, C. Y. Characterization of gold nanorods in vivo by integrated analytical techniques: Their uptake, retention, and chemical forms. Anal. Bioanal. Chem. 2010, 396, 1105–1114.

    Article  Google Scholar 

  15. Hillyer, J. F.; Albrecht, R. M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 2001, 90, 1927–36.

    Article  Google Scholar 

  16. Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343.

    Article  Google Scholar 

  17. Li, H. Y.; Chen, M.; Yang, J. F.; Yang, C. Q.; Xu, L.; Wang, F.; Tong, J. B.; Lv, Y.; Suonan, C. Fluid flow along venous adventitia in rabbits: Is it a potential drainage system complementary to vascular circulations? PLoS One 2012, 7, e41395.

    Article  Google Scholar 

  18. Li, H. Y.; Tong, J. B.; Cao, W. G.; Chen, M.; Li, H.; Dai, H.; Xu, L.; Chen, X. L. Longitudinal non-vascular transport pathways originating from acupuncture points in extremities visualised in human body. Chin. Sci. Bull. 2014, 59, 5090–5095.

    Article  Google Scholar 

  19. Feng, J. T.; Wang, F.; Han, X. X.; Ao, Z.; Sun, Q. M.; Hua, W. D.; Chen, P. P.; Jing, T. W.; Li, H. Y.; Han, D. A “green pathway” different from simple diffusion in soft matter: Fast molecular transport within micro/nanoscale multiphase porous systems. Nano Res. 2014, 7, 434–442.

    Article  Google Scholar 

  20. Ma, Y. Y.; Li, W. Y.; Cho, E. C.; Li, Z. Y.; Yu, T.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 2010, 4, 6725–6734.

    Article  Google Scholar 

  21. Drake, R. L.; Vogl, W.; Mitchell, A. W. M. Gray's Anatomy for Students; Elsevier: Philadelphia, 2005.

    Google Scholar 

  22. Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782.

    Article  Google Scholar 

  23. Jiang, Y. Y.; Deng, Z. J.; Yang, D.; Deng, X.; Li, Q.; Sha, Y. L.; Li, C. H.; Xu, D. S. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res. 2015, 8, 2152–2161.

    Article  Google Scholar 

  24. Howes, P. D.; Chandrawati, R.; Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 1247390.

    Article  Google Scholar 

  25. Ng, V. W. K.; Berti, R.; Lesage, F.; Kakkar, A. Gold: A versatile tool for in vivo imaging. J. Mater. Chem. B 2013, 1, 9–25.

    Article  Google Scholar 

  26. Schleh, C.; Semmler-Behnke, M.; Lipka, J.; Wenk, A.; Hirn, S.; Schäffler, M.; Schmid, G.; Simon, U.; Kreyling, W. G. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 2012, 6, 36–46.

    Article  Google Scholar 

  27. Hagens, W. I.; Oomen, A. G.; de Jong, W. H.; Cassee, F. R.; Sips, A. J. A. M. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol. 2007, 49, 217–229.

    Article  Google Scholar 

  28. Koo, H.; Huh, M. S.; Sun, I. C.; Yuk, S. H.; Choi, K.; Kim, K.; Kwon, I. C. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res. 2011, 44, 1018–1028.

    Article  Google Scholar 

  29. Park, K.; Lee, S.; Kang, E.; Kim, K.; Choi, K.; Kwon, I. C. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv. Funct. Mater. 2009, 19, 1553–1566.

    Article  Google Scholar 

  30. Semmler-Behnke, M.; Kreyling, W. G.; Lipka, J.; Fertsch, S.; Wenk, A.; Takenaka, S.; Schmid, G.; Brandau, W. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 2008, 4, 2108–2111.

    Article  Google Scholar 

  31. Balasubramanian, S. K.; Jittiwat, J.; Manikandan, J.; Ong, C. N.; Yu, L. E.; Ong, W. Y. Biodistribution of gold nano-particles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 2010, 31, 2034–2042.

    Article  Google Scholar 

  32. Choi, C. H. J.; Alabi, C. A.; Webster, P.; Davis, M. E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA 2010, 107, 1235–1240.

    Article  Google Scholar 

  33. Elder, A.; Gelein, R.; Silva, V.; Feikert, T.; Opanashuk, L.; Carter, J.; Potter, R.; Maynard, A.; Ito, Y.; Finkelstein, J. et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 2006, 114, 1172–1178.

    Article  Google Scholar 

  34. Matsui, Y.; Sakai, N.; Tsuda, A.; Terada, Y.; Takaoka, M.; Fujimaki, H.; Uchiyama, I. Tracking the pathway of diesel exhaust particles from the nose to the brain by X-ray florescence analysis. Spectrochim. Acta B 2009, 64, 796–801.

    Article  Google Scholar 

  35. Iliff, J. J.; Wang, M.; Liao, Y.; Plogg, B. A.; Peng, W.; Gundersen, G. A.; Benveniste, H.; Vates, G. E.; Deane, R.; Goldman, S. A. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111.

    Article  Google Scholar 

  36. Thrane, V. R.; Thrane, A. S.; Plog, B. A.; Thiyagarajan, M.; Iliff, J. J.; Deane, R.; Nagelhus, E. A.; Nedergaard, M. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci. Rep. 2013, 3, 2582.

    Article  Google Scholar 

  37. Carare, R. O.; Bernardes-Silva, M.; Newman, T. A.; Page, A. M.; Nicoll, J. A. R.; Perry, V. H.; Weller, R. O. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: Significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 2008, 34, 131–144.

    Article  Google Scholar 

  38. Louveau, A.; Smirnov, I.; Keyes, T. J.; Eccles, J. D.; Rouhani, S. J.; Peske, J. D.; Derecki, N. C.; Castle, D.; Mandell, J. W.; Lee, K. S. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523, 337–341.

    Article  Google Scholar 

  39. Langevin, H. M. Connective tissue: A body-wide signaling network? Med. Hypotheses 2006, 66, 1074–1077.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyi Li or Dong Han.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Zhu, Y., Hua, W. et al. An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel. Nano Res. 9, 2097–2109 (2016). https://doi.org/10.1007/s12274-016-1100-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1100-3

Keywords

Navigation