Skip to main content
Log in

Multi-dimensionally ordered, multi-functionally integrated r-GO@TiO2(B)@Mn3O4 yolk–membrane–shell superstructures for ultrafast lithium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

TiO2(B) is an attractive new anode candidate for lithium-ion batteries (LIBs) due to its unique and highly desirable properties, including high structural integrity, long cycle life, and low cost. However, despite these merits, its inherent slow lithium and electron transport kinetics hinder its practical application to LIBs. Here, we propose a novel, simple route towards multi-dimensionally ordered, multi-functionally integrated reduced graphene oxide (r-GO)@TiO2(B)@Mn3O4 yolk–membrane–shell superstructures in which r-GO nanosheets, TiO2(B) nanosheets, and Mn3O4 nanoparticles are hierarchically organized to achieve remarkable synergistic interactions. This hybridization design is fundamentally bilateral in nature, aiming to overcome the conductivity and capacity deficiencies of TiO2(B) simultaneously. The resulting r-GO@TiO2(B)@Mn3O4 yolk–membrane–shell superstructures have great potential as advanced anode materials for ultrafast lithium storage, delivering a strikingly high reversible capacity of 662 mA·h·g−1 at 500 mA·g−1 after 500 charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, A. L. M.; Gowda, S. R.; Shaijumon, M. M.; Ajayan, P. M. Hybrid nanostructures for energy storage applications. Adv. Mater. 2012, 24, 5045–5064.

    Article  Google Scholar 

  2. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

    Article  Google Scholar 

  3. Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

    Article  Google Scholar 

  4. Pan, L.; Zhu, X.-D.; Xie, X.-M.; Liu, Y.-T. Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: Hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv. Funct. Mater. 2015, 25, 3341–3350.

    Article  Google Scholar 

  5. Wang, Z. Y.; Lou, X. W. TiO2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties. Adv. Mater. 2012, 24, 4124–4129.

    Article  Google Scholar 

  6. Yu, X.-Y.; Wu, H. B.; Yu, L.; Ma, F.-X.; Lou, X. W. Rutile TiO2 submicroboxes with superior lithium storage properties. Angew. Chem., Int. Ed. 2015, 54, 4001–4004.

    Article  Google Scholar 

  7. Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L.-J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.

    Article  Google Scholar 

  8. Cao, F.-F.; Wu, X.-L.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Facile synthesis of mesoporous TiO2–C nanosphere as an improved anode material for superior high rate 1.5 V rechargeable Li ion batteries containing LiFePO4–C cathode. J. Phys. Chem. C 2010, 114, 10308–10313.

    Article  Google Scholar 

  9. Chen, J. S.; Liang, Y. N.; Li, Y. M.; Yan, Q. Y.; Hu, X. H2O–EG-assisted synthesis of uniform urchinlike rutile TiO2 with superior lithium storage properties. ACS Appl. Mater. Interfaces 2013, 5, 9998–10003.

    Article  Google Scholar 

  10. Pan, D. Y.; Huang, H.; Wang, X. Y.; Wang, L.; Liao, H. B.; Li, Z.; Wu, M. H. C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors. J. Mater. Chem. A 2014, 2, 11454–11464.

    Article  Google Scholar 

  11. Wu, Q. L.; Yang, X. F.; Zhou, W. Z.; Gao, Q.; Lu, F. Q.; Zhuang, J. L.; Xu, X. F.; Wu, M. M.; Fan, H. J. “Isofacet” anatase TiO2 microcages: Topotactic synthesis and ultrastable Li-ion storage. Adv. Mater. Interfaces 2015, 2, 1500210.

    Google Scholar 

  12. Zukalová, M.; Kalbác, M.; Kavan, L.; Exnar, I.; Graetzel, M. Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 2005, 17, 1248–1255.

    Article  Google Scholar 

  13. Dalton, A. S.; Belak, A. A.; Van der Ven, A. Thermodynamics of lithium in TiO2(B) from first principles. Chem. Mater. 2012, 24, 1568–1574.

    Article  Google Scholar 

  14. Armstrong, A. R.; Arrouvel, C.; Gentili, V.; Parker, S. C.; Islam, M. S.; Bruce, P. G. Lithium coordination sites in LixTiO2(B): A structural and computational study. Chem. Mater. 2010, 22, 6426–6432.

    Article  Google Scholar 

  15. Arrouvel, C.; Parker, S. C.; Islam, M. S. Lithium insertion and transport in the TiO2–B anode material: A computational study. Chem. Mater. 2009, 21, 4778–4783.

    Article  Google Scholar 

  16. Dylla, A. G.; Henkelman, G.; Stevenson, K. J. Lithium insertion in nanostructured TiO2(B) architectures. Acc. Chem. Res. 2013, 46, 1104–1112.

    Article  Google Scholar 

  17. Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Nanoparticulate TiO2(B): An anode for lithium-ion batteries. Angew. Chem. 2012, 124, 2206–2209.

    Article  Google Scholar 

  18. Dylla, A. G.; Xiao, P. H.; Henkelman, G.; Stevenson, K. J. Morphological dependence of lithium insertion in nanocrystalline TiO2(B) nanoparticles and nanosheets. J. Phys. Chem. Lett. 2012, 3, 2015–2019.

    Article  Google Scholar 

  19. Dylla, A. G.; Lee, J. A.; Stevenson, K. J. Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B). Langmuir 2012, 28, 2897–2903.

    Article  Google Scholar 

  20. Liu, H. S.; Bi, Z. H.; Sun, X.-G.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Brown, G. M. Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 2011, 23, 3450–3454.

    Article  Google Scholar 

  21. Brutti, S.; Gentili, V.; Menard, H.; Scrosati, B.; Bruce, P. G. TiO2-(B) nanotubes as anodes for lithium batteries: Origin and mitigation of irreversible capacity. Adv. Energy Mater. 2012, 2, 322–327.

    Article  Google Scholar 

  22. Qu, J.; Wu, Q.-D.; Ren, Y.-R.; Su, Z.; Lai, C.; Ding, J.-N. Enhanced high-rate performance of double-walled TiO2-B nanotubes as anodes in lithium-ion batteries. Chem. Asian J. 2012, 7, 2516–2518.

    Article  Google Scholar 

  23. Giannuzzi, R.; Manca, M.; De Marco, L.; Belviso, M. R.; Cannavale, A.; Sibillano, T.; Giannini, C.; Cozzoli, P. D.; Gigli, G. Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance. ACS Appl. Mater. Interfaces 2014, 6, 1933–1943.

    Article  Google Scholar 

  24. Aravindan, V.; Shubha, N.; Cheah, Y. L.; Prasanth, R.; Chuiling, W.; Prabhakar, R. R.; Madhavi, S. Extraordinary long-term cycleability of TiO2-B nanorods as anodes in full-cell assembly with electrospun PVdF-HFP membranes. J. Mater. Chem. A 2013, 1, 308–316.

    Article  Google Scholar 

  25. Wilkening, M.; Lyness, C.; Armstrong, A. R.; Bruce, P. G. Diffusion in confined dimensions: Li+ transport in mixed conducting TiO2–B nanowires. J. Phys. Chem. C 2009, 113, 4741–4744.

    Article  Google Scholar 

  26. Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 2006, 18, 2597–2600.

    Article  Google Scholar 

  27. Armstrong, A. R.; Armstrong, G.; Canales, J.; García, R.; Bruce, P. G. Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 2005, 17, 862–865.

    Article  Google Scholar 

  28. Hu, H.; Yu, L.; Gao, X. H.; Lin, Z.; Lou, X. W. Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage. Energy Environ. Sci. 2015, 8, 1480–1483.

    Article  Google Scholar 

  29. Liu, S. H.; Jia, H. P.; Han, L.; Wang, J. L.; Gao, P. F.; Xu, D. D.; Yang, J.; Che, S. Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 2012, 24, 3201–3204.

    Article  Google Scholar 

  30. Etacheri, V.; Kuo, Y.; Van der Ven, A.; Bartlett, B. M. Mesoporous TiO2–B microflowers composed of (11_0) facetexposed nanosheets for fast reversible lithium-ion storage. J. Mater. Chem. A 2013, 1, 12028–12032.

    Article  Google Scholar 

  31. Beuvier, T.; Richard-Plouet, M.; Mancini-Le Granvalet, M.; Brousse, T.; Crosnier, O.; Brohan, L. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. Inorg. Chem. 2010, 49, 8457–8464.

    Article  Google Scholar 

  32. Sun, Z. Y.; Huang, X.; Muhler, M.; Schuhmann, W.; Ventosa, E. A carbon-coated TiO2(B) nanosheet composite for lithium ion batteries. Chem. Commun. 2014, 50, 5506–5509.

    Article  Google Scholar 

  33. Liu, S. H.; Wang, Z. Y.; Yu, C.; Wu, H. B.; Wang, G.; Dong, Q.; Qiu, J. S.; Eychmü ller, A.; Lou, X. W. A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life. Adv. Mater. 2013, 25, 3462–3467.

    Article  Google Scholar 

  34. Chen, C. J.; Hu, X. L.; Wang, Z. H.; Xiong, X. Q.; Hu, P.; Liu, Y.; Huang, Y. H. Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries. Carbon 2014, 69, 302–310.

    Article  Google Scholar 

  35. Etacheri, V.; Yourey, J. E.; Bartlett, B. M. Chemically bonded TiO2–bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano 2014, 8, 1491–1499.

    Article  Google Scholar 

  36. Yan, X.; Li, Y. J.; Li, M. L.; Jin, Y. C.; Du, F.; Chen, G.; Wei, Y. J. Ultrafast lithium storage in TiO2–bronze nanowires/ N-doped graphene nanocomposites. J. Mater. Chem. A 2015, 3, 4180–4187.

    Article  Google Scholar 

  37. Zhen, M. M.; Guo, S. Q.; Gao, G. D.; Zhou, Z.; Liu, L. TiO2–B nanorods on reduced graphene oxide as anode materials for Li ion batteries. Chem. Commun. 2015, 51, 507–510.

    Article  Google Scholar 

  38. Liao, J.-Y.; Higgins, D.; Lui, G.; Chabot, V.; Xiao, X. C.; Chen, Z. W. Multifunctional TiO2–C/MnO2 core–double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett. 2013, 13, 5467–5473.

    Article  Google Scholar 

  39. Luo, J. S.; Xia, X. H.; Luo, Y. S.; Guan, C.; Liu, J. L.; Qi, X. Y.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743.

    Article  Google Scholar 

  40. Wang, C.; Wu, L. X.; Wang, H.; Zuo, W. H.; Li, Y. Y.; Liu, J. P. Fabrication and shell optimization of synergistic TiO2-MoO3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3524–3533.

    Article  Google Scholar 

  41. Luo, Y. S.; Luo, J. S.; Zhou, W. W.; Qi, X. Y.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Fan, H. J.; Yu, T. Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J. Mater. Chem. A 2013, 1, 273–281.

    Article  Google Scholar 

  42. Wang, N.; Yue, J.; Chen, L.; Qian, Y. T.; Yang, J. Hydrogenated TiO2 branches coated Mn3O4 nanorods as an advanced anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 10348–10355.

    Article  Google Scholar 

  43. Xia, H.; Xiong, W.; Lim, C. K.; Yao, Q. F.; Wang, Y. D.; Xie, J. P. Hierarchical TiO2-B nanowire@a-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res. 2014, 7, 1797–1808.

    Article  Google Scholar 

  44. Yang, Z. X.; Du, G. D.; Guo, Z. P.; Yu, X. B.; Chen, Z. X.; Guo, T. L.; Zeng, R. Encapsulation of TiO2(B) nanowire cores into SnO2/carbon nanoparticle shells and their high performance in lithium storage. Nanoscale 2011, 3, 4440–4447.

    Article  Google Scholar 

  45. Wang, H. L.; Cui, L.-F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.

    Article  Google Scholar 

  46. Gao, J.; Lowe, M. A.; Abruña, H. D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater. 2011, 23, 3223–3227.

    Article  Google Scholar 

  47. Chen, L.-L.; Wu, X.-L.; Guo, Y.-G.; Kong, Q.-S.; Xia, Y.-Z. Synthesis of nanostructured fibers consisting of carbon coated Mn3O4 nanoparticles and their application in electrochemical capacitors. J. Nanosci. Nanotechnol. 2010, 10, 8158–8163.

    Article  Google Scholar 

  48. Yue, H. W.; Li, F.; Yang, Z. B.; Li, X. W.; Lin, S. M.; He, D. Y. Facile preparation of Mn3O4-coated carbon nanofibers on copper foam as a high-capacity and long-life anode for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 17352–17358.

    Article  Google Scholar 

  49. Yu, T.; Moon, J.; Park, J.; Park, Y. I.; Na, H. B.; Kim, B. H.; Song, I. C.; Moon, W. K.; Hyeon, T. Various-shaped uniform Mn3O4 nanocrystals synthesized at low temperature in air atmosphere. Chem. Mater. 2009, 21, 2272–2279.

    Article  Google Scholar 

  50. Liu, Y.-T.; Zhu, X.-D.; Duan, Z.-Q.; Xie, X.-M. Flexible and robust MoS2–graphene hybrid paper cross-linked by a polymer ligand: A high-performance anode material for thin film lithium-ion batteries. Chem. Commun. 2013, 49, 10305–10307.

    Article  Google Scholar 

  51. Chen, C. J.; Hu, X. L.; Jiang, Y.; Yang, Z.; Hu, P.; Huang, Y. H. TiO2–B nanosheets/anatase nanocrystals co-anchored on nanoporous graphene: In situ reduction–hydrolysis synthesis and their superior rate performance as an anode material. Chem.—Eur. J. 2014, 20, 1383–1388.

    Article  Google Scholar 

  52. Zhang, G. Q.; Xia, B. Y.; Wang, X.; Lou, X. W. Strongly coupled NiCo2O4-rGO hybrid nanosheets as a methanoltolerant electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2014, 26, 2408–2412.

    Article  Google Scholar 

  53. Wang, D.; Niu, W. Q.; Tan, M. H.; Wu, M. B.; Zheng, X. J.; Li, Y. P.; Tsubaki, N. Pt nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol. ChemSusChem 2014, 7, 1398–1406.

    Article  Google Scholar 

  54. Pan, L.; Zhu, X.-D.; Xie, X.-M.; Liu, Y.-T. Delicate ternary heterostructures achieved by hierarchical co-assembly of Ag and Fe3O4 nanoparticles on MoS2 nanosheets: Morphological and compositional synergy in reversible lithium storage. J. Mater. Chem. A 2015, 3, 2726–2733.

    Article  Google Scholar 

  55. Pan, L.; Wang, K.-X.; Zhu, X.-D.; X.-M.; Liu, Y.-T. Hierarchical assembly of SnO2 nanowires on MnO2 nanosheets: A novel 1/2D hybrid architecture for highcapacity, reversible lithium storage. J. Mater. Chem. A 2015, 3, 6477–6483.

    Article  Google Scholar 

  56. Zhu, X.-D.; Wang, K.-X.; Yan, D.-J.; Le, S.-R.; Ma, R.-J.; Sun, K.-N.; Liu, Y.-T. Creating a synergistic interplay between tubular MoS2 and particulate Fe3O4 for improved lithium storage. Chem. Commun. 2015, 51, 11888–11891.

    Article  Google Scholar 

  57. Xu, H.; Zhu, X.-D.; Sun, K.-N.; Liu, Y.-T.; Xie, X.-M. Elaborately designed hierarchical heterostructures consisting of carbon-coated TiO2(B) nanosheets decorated with Fe3O4 nanoparticles for remarkable synergy in high-rate lithium storage. Adv. Mater. Interfaces 2015, 2, 1500239.

    Google Scholar 

  58. Duan, Z.-Q.; Liu, Y.-T.; Xie, X.-M.; Ye, X.-Y.; Zhu, X.-D. h-BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles: A hybrid anode material for lithium-ion batteries. Chem.—Asian J. 2016, 11, 828–833.

    Article  Google Scholar 

  59. Yan, D.-J.; Zhu, X.-D.; Wang, K.-X.; Gao, X.-T.; Feng, Y.-J.; Sun, K.-N.; Liu, Y.-T. Facile and elegant selforganization of Ag nanoparticles and TiO2 nanorods on V2O5 nanosheets as a superior cathode material for lithiumion batteries. J. Mater. Chem. A 2016, 4, 4900–4907.

    Article  Google Scholar 

  60. Zhou, Z.-W.; Liu, Y.-T.; Xie, X.-M.; Ye, X.-Y. Constructing novel Si@SnO2 core–shell heterostructures by facile selfassembly of SnO2 nanowires on silicon hollow nanospheres for large, reversible lithium storage. ACS Appl. Mater. Interfaces 2016, 8, 7092–7100.

    Article  Google Scholar 

  61. Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

    Article  Google Scholar 

  62. Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J.-M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627–A634.

    Article  Google Scholar 

  63. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yitao Liu or Xuming Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Liu, Y., Xie, X. et al. Multi-dimensionally ordered, multi-functionally integrated r-GO@TiO2(B)@Mn3O4 yolk–membrane–shell superstructures for ultrafast lithium storage. Nano Res. 9, 2057–2069 (2016). https://doi.org/10.1007/s12274-016-1096-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1096-8

Keywords

Navigation