Skip to main content
Log in

Nitrogen-doped graphene nanosheets as reactive water purification membranes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxidation of organic pollutants by sulfate radicals produced via activation of persulfate has emerged as a promising advanced oxidation technology to address various challenging environmental issues. The development of an effective, environmentally-friendly, metal-free catalyst is the key to this technology. Additionally, a supported catalyst design is more advantageous than conventional suspended powder catalysts from the point of view of mass transfer and practical engineering applications (e.g. post-use separation). In this study, a metal-free N-doped reduced graphene oxide (N-rGO) catalyst was prepared via a facile hydrothermal method. N-rGO filters were then synthesized by facile vacuum filtration, such that water can flow through nanochannels within the filters. Various advanced characterization techniques were employed to obtain structural and compositional information of the as-synthesized N-rGO filters. An optimized phenol oxidative flux of 0.036 ± 0.002 mmol·h–1 was obtained by metal-free catalytic activation of persulfate at an influent persulfate concentration of 1.0 mmol·L–1 and filter weight of 15 mg, while a N-free rGO filter demonstrated negligible phenol oxidation capability under similar conditions. Compared to a conventional batch system, the flow-through design demonstrates obviously enhanced oxidation kinetics (0.036 vs. 0.010 mmol·h–1), mainly due to the liquid flow through the filter leading to convection-enhanced transfer of the target molecule to the filter active sites. Overall, the results exemplified the advantages of organic compound removal by catalytic activation of persulfate using a metal-free catalyst in flowthrough mode, and demonstrated the potential of N-rGO filters for practical environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michalowicz, J.; Duda, W. Phenols—Sources and toxicity. Pol. J. Environ. Stud. 2007, 16, 347–362.

    Google Scholar 

  2. Hladik, M. L.; Focazio, M. J.; Engle, M. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams. Sci. Total Environ. 2014, 466–467, 1085–1093.

    Article  Google Scholar 

  3. Mukherjee, R.; De, S. Adsorptive removal of phenolic compounds using cellulose acetate phthalate-alumina nanoparticle mixed matrix membrane. J. Hazard. Mater. 2014, 265, 8–19.

    Article  Google Scholar 

  4. Zhang, A.; Li, Y. M. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix. Sci. Total Environ. 2014, 493, 307–323.

    Article  Google Scholar 

  5. Al Hashemi, W.; Maraqa, M. A.; Rao, M. V.; Hossain, M. M. Characterization and removal of phenolic compounds from condensate-oil refinery wastewater. Desalin. Water Treat. 2015, 54, 660–671.

    Article  Google Scholar 

  6. Iboukhoulef, H.; Amrane, A.; Kadi, H. Removal of phenolic compounds from olive mill wastewater by a Fenton-like system H2O2/Cu(II)—Thermodynamic and kinetic modeling. Desalin. Water Treat. 2016, 57, 1874–1879.

    Article  Google Scholar 

  7. Adhoum, N.; Monser, L. Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation. Chem. Eng. Process. 2004, 43, 1281–1287.

    Article  Google Scholar 

  8. Achak, M.; Hafidi, A.; Ouazzani, N.; Sayadi, S.; Mandi, L. Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. J. Hazard. Mater. 2009, 166, 117–125.

    Article  Google Scholar 

  9. Ersöz, A.; Denizli, A.; Sener, I.; Atilir, A.; Diltemiz, S.; Say, R. Removal of phenolic compounds with nitrophenolimprinted polymer based on p–p and hydrogen-bonding interactions. Sep. Purif. Technol. 2004, 38, 173–179.

    Article  Google Scholar 

  10. Caza, N.; Bewtra, J. K.; Biswas, N.; Taylor, K. E. Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Res. 1999, 33, 3012–3018.

    Article  Google Scholar 

  11. Subramani, A.; Jacangelo, J. G. Emerging desalination technologies for water treatment: A critical review. Water Res. 2015, 75, 164–187.

    Article  Google Scholar 

  12. Saitoh, T.; Fukushima, K.; Miwa, A. Combined use of surfactant-induced coagulation of poly(allylamine hydrochloride) with peroxidase-mediated degradation for the rapid removal of estrogens and phenolic compounds from water. Sep. Purif. Technol. 2014, 128, 11–17.

    Article  Google Scholar 

  13. Indrawirawan, S.; Sun, H. Q.; Duan, X. G.; Wang, S. B. Nanocarbons in different structural dimensions (0–3D) for phenol adsorption and metal-free catalytic oxidation. Appl. Catal. B: Environ. 2015, 179, 352–362.

    Article  Google Scholar 

  14. Sun, H. Q.; Liu, S. Z.; Zhou, G. L.; Ang, H. M.; Tadé, M. O.; Wang, S. B. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl. Mater. Interfaces 2012, 4, 5466–5471.

    Article  Google Scholar 

  15. Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbæk, H.; Siegrist, R. L.; Bjerg, P. L. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91.

    Article  Google Scholar 

  16. Brillas, E.; Sirés, I.; Oturan, M. A. Electro-fenton process and related electrochemical technologies based on fenton's reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.

    Article  Google Scholar 

  17. Yan, J. C.; Zhu, L. H.; Luo, Z. H.; Huang, Y. F.; Tang, H. Q.; Chen, M. F. Oxidative decomposition of organic pollutants by using persulfate with ferrous hydroxide colloids as efficient heterogeneous activator. Sep. Purif. Technol. 2013, 106, 8–14.

    Article  Google Scholar 

  18. Yan, J. C.; Lei, M.; Zhu, L. H.; Anjum, M. N.; Zou, J.; Tang, H. Q. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J. Hazard. Mater. 2011, 186, 1398–1404.

    Article  Google Scholar 

  19. Fang, G. D.; Gao, J.; Dionysiou, D. D.; Liu, C.; Zhou, D. M. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs. Environ. Sci. Technol. 2013, 47, 4605–4611.

    Article  Google Scholar 

  20. Fang, G. D.; Liu, C.; Gao, J.; Dionysiou, D. D.; Zhou, D. M. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ. Sci. Technol. 2015, 49, 5645–5653.

    Article  Google Scholar 

  21. Zhong, H.; Brusseau, M. L.; Wang, Y. K.; Yan, N.; Quig, L.; Johnson, G. R. In-situ activation of persulfate by iron filings and degradation of 1,4-dioxane. Water Res. 2015, 83, 104–111.

    Article  Google Scholar 

  22. Gao, Y. W.; Zhang, Z. Y.; Li, S. M.; Liu, J.; Yao, L. Y.; Li, Y. X.; Zhang, H. Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation. Appl. Catal. B: Environ. 2016, 185, 22–30.

    Article  Google Scholar 

  23. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  24. Chen, S. S.; Wu, Q. Z.; Mishra, C.; Kang, J. Y.; Zhang, H. J.; Cho, K.; Cai, W. W.; Balandin, A. A.; Ruoff, R. S. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203–207.

    Article  Google Scholar 

  25. Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; He, L. B.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 2012, 22, 4421–4425.

    Article  Google Scholar 

  26. Bi, H. C.; Yin, K. B.; Xie, X.; Zhou, Y. L.; Wan, N.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S. Low temperature casting of graphene with high compressive strength. Adv. Mater. 2012, 24, 5124–5129.

    Article  Google Scholar 

  27. Ren, W. C.; Cheng, H. M. The global growth of graphene. Nat. Nanotechnol. 2014, 9, 726–730.

    Article  Google Scholar 

  28. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  29. Lonkar, S. P.; Deshmukh, Y. S.; Abdala, A. A. Recent advances in chemical modifications of graphene. Nano Res. 2015, 8, 1039–1074.

    Article  Google Scholar 

  30. Peng, W. C.; Li, X. Y. Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst. Nano Res. 2013, 6, 286–292.

    Article  Google Scholar 

  31. Wang, X. B.; Huang, S. S.; Zhu, L. H.; Tian, X. L.; Li, S. H.; Tang, H. Q. Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon 2014, 69, 101–112.

    Article  Google Scholar 

  32. Chen, C.; Cai, W. M.; Long, M. C.; Zhou, B. X.; Wu, Y. H.; Wu, D. Y.; Feng, Y. J. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 2010, 4, 6425–6432.

    Article  Google Scholar 

  33. Gao, P.; Liu, Z. Y.; Sun, D. D. The synergetic effect of sulfonated graphene and silver as co-catalysts for highly efficient photocatalytic hydrogen production of ZnO nanorods. J. Mater. Chem. A 2013, 1, 14262–14269.

    Article  Google Scholar 

  34. Chen, S.; Duan, J. J.; Tang, Y. H.; Jin, B.; Qiao, S. Z. Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. Nano Energy 2015, 11, 11–18.

    Article  Google Scholar 

  35. Zhou, R. F.; Qiao, S. Z. Silver/nitrogen-doped graphene interaction and its effect on electrocatalytic oxygen reduction. Chem. Mater. 2014, 26, 5868–5873.

    Article  Google Scholar 

  36. Yin, H.; Zhang, C. Z.; Liu, F.; Hou, Y. L. Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. Adv. Funct. Mater. 2014, 24, 2930–2937.

    Article  Google Scholar 

  37. Tian, G. L.; Zhao, M. Q.; Yu, D. S.; Kong, X. Y.; Huang, J. Q.; Zhang, Q.; Wei, F. Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 2014, 10, 2251–2259.

    Article  Google Scholar 

  38. Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 2014, 26, 6100–6105.

    Article  Google Scholar 

  39. Duan, J. J.; Chen, S.; Dai, S.; Qiao, S. Z. Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity. Adv. Funct. Mater. 2014, 24, 2072–2078.

    Article  Google Scholar 

  40. Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S. M.; Chen, Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano 2014, 8, 6856–6862.

    Article  Google Scholar 

  41. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.

    Article  Google Scholar 

  42. Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

    Article  Google Scholar 

  43. Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

    Article  Google Scholar 

  44. Duan, X. G.; O’Donnell, K.; Sun, H. Q.; Wang, Y. X.; Wang, S. B. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions. Small 2015, 11, 3036–3044.

    Article  Google Scholar 

  45. Duan, X. G.; Ao, Z. M.; Sun, H. Q.; Indrawirawan, S.; Wang, Y. X.; Kang, J.; Liang, F. L.; Zhu, Z. H.; Wang, S. B. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. ACS Appl. Mater. Interfaces 2015, 7, 4169–4178.

    Article  Google Scholar 

  46. Duan, X. G.; Indrawirawan, S.; Sun, H. Q.; Wang, S. B. Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis. Catal. Today 2015, 249, 184–191.

    Article  Google Scholar 

  47. Liu, Y. B.; Liu, H.; Zhou, Z.; Wang, T. R.; Ong, C. N.; Vecitis, C. D. Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter. Environ. Sci. Technol. 2015, 49, 7974–7980.

    Article  Google Scholar 

  48. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, 2001.

    Google Scholar 

  49. Hu, M.; Mi, B. X. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47, 3715–3723.

    Article  Google Scholar 

  50. Liu, H.; Liu, J.; Liu, Y. B.; Bertoldi, K.; Vecitis, C. D. Quantitative 2D electrooxidative carbon nanotube filter model: Insight into reactive sites. Carbon 2014, 80, 651–664.

    Article  Google Scholar 

  51. Sun, P. Z.; Zheng, F.; Zhu, M.; Song, Z. G.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; Little, R. B.; Xu, Z. P.; Zhu, H. W. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation–p interactions. ACS Nano 2014, 8, 850–859.

    Article  Google Scholar 

  52. Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014, 343, 752–754.

    Article  Google Scholar 

  53. Mi, B. X. Graphene oxide membranes for ionic and molecular sieving. Science 2014, 343, 740–742.

    Article  Google Scholar 

  54. Liu, H.; Vecitis, C. D. Reactive transport mechanism for organic oxidation during electrochemical filtration: Masstransfer, physical adsorption, and electron-transfer. J. Phys. Chem. C 2012, 116, 374–383.

    Article  Google Scholar 

  55. Wang, X. B.; Qin, Y. L.; Zhu, L. H.; Tang, H. Q. Nitrogendoped reduced graphene oxide as a bifunctional material for removing bisphenols: Synergistic effect between adsorption and catalysis. Environ. Sci. Technol. 2015, 49, 6855–6864.

    Article  Google Scholar 

  56. Liu, Y. B.; Xie, J. P.; Ong, C. N.; Vecitis, C. D.; Zhou, Z. Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. Environ. Sci.: Water Res. Technol. 2015, 1, 769–778.

    Google Scholar 

  57. Zhou, Y.; Bao, Q. L.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950–2956.

    Article  Google Scholar 

  58. Sahu, V.; Grover, S.; Tulachan, B.; Sharma, M.; Srivastava, G.; Roy, M.; Saxena, M.; Sethy, N.; Bhargava, K.; Philip, D. et al. Heavily nitrogen doped, graphene supercapacitor from silk cocoon. Electrochim. Acta 2015, 160, 244–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbiao Liu or Jianping Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yu, L., Ong, C.N. et al. Nitrogen-doped graphene nanosheets as reactive water purification membranes. Nano Res. 9, 1983–1993 (2016). https://doi.org/10.1007/s12274-016-1089-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1089-7

Keywords

Navigation