Skip to main content
Log in

Recent advances in chemical modifications of graphene

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene has attracted the interest of chemists, physicists, and materials scientists due to its extraordinary structural, mechanical, and electronic properties. While pristine graphene is desirable for applications that require a high electrical conductivity, many other applications require modified or functionalized forms of graphene, such as graphene oxide, reduced graphene, or other functionalized forms. Structurally modifying graphene through chemical functionalization reveals the numerous possibilities for tuning its structure; several chemical and physical functionalization methods have been explored to improve the stabilization and modification of graphene. In this review, we report recent progress towards the chemical modification of graphene, including both covalent and noncovalent methods, for use in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Google Scholar 

  3. Lightcap, I. V.; Kamat, P. V. Graphitic design: Prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc. Chem. Res. 2013, 46, 2235–2243.

    Google Scholar 

  4. Zhang, J.; Zhao, F.; Zhang, Z. P.; Chen, N.; Qu, L. T. Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 2013, 5, 3112–3126.

    Google Scholar 

  5. Liu, J. Q.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013, 9, 9243–9257.

    Google Scholar 

  6. Yang, Y. Q.; Asiri, A. M.; Tang, Z. W.; Du, D.; Lin, Y. H. Graphene based materials for biomedical applications. Mater. Today 2013, 16, 365–373.

    Google Scholar 

  7. Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648.

    Google Scholar 

  8. Ma, H. M.; Wu, D.; Cui, Z. T.; Li, Y.; Zhang, Y.; Du, B.; Wei, Q. Graphene-based optical and electrochemical biosensors: A review. Anal. Lett. 2013, 46, 1–17.

    Google Scholar 

  9. Du, J. H.; Cheng, H. M. The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 2012, 213, 1060–1077.

    Google Scholar 

  10. Kuilla, T.; Bhadra, S.; Yao, D. H.; Kim, N. H.; Bose, S.; Lee, J. H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375.

    Google Scholar 

  11. Iwan, A.; Chuchmała, A. Perspectives of applied graphene: Polymer solar cells. Prog. Polym. Sci. 2012, 37, 1805–1828.

    Google Scholar 

  12. Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157.

    Google Scholar 

  13. Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674.

    Google Scholar 

  14. Maiti, U. N.; Lim, J.; Lee, K. E.; Lee, W. J.; Kim, S. O. Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 2014, 26, 615–619.

    Google Scholar 

  15. Areshkin, D. A.; White, C. T. Building blocks for integrated graphene circuits. Nano Lett. 2007, 7, 3253–3259.

    Google Scholar 

  16. Li, S. L.; Miyazaki, H.; Kumatani, A.; Kanda, A.; Tsukagoshi, K. Low operating bias and matched input-output characteristics in graphene logic inverters. Nano Lett. 2010, 10, 2357–2362.

    Google Scholar 

  17. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Google Scholar 

  18. Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.

    Google Scholar 

  19. Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

    Google Scholar 

  20. Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

    Google Scholar 

  21. Zhang, J. L.; Shen, G. X.; Wang, W. J.; Zhou, X. J.; Guo, S. W. Individual nanocomposite sheets of chemically reduced graphene oxide and poly(N-vinyl pyrrolidone): Preparation and humidity sensing characteristics. J. Mater. Chem. 2010, 20, 10824–10828.

    Google Scholar 

  22. Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

    Google Scholar 

  23. Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128, 7720–7721.

    Google Scholar 

  24. Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.

    Google Scholar 

  25. Bai, H.; Xu, Y. X.; Zhao, L.; Li, C.; Shi, G. Q. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 2009, 45, 1667–1669.

    Google Scholar 

  26. Georgakilas, V.; Bourlinos, A. B.; Zboril, R.; Steriotis, T. A.; Dallas, P.; Stubos, A. K.; Trapalis, C. Organic functionalisation of graphenes. Chem. Commun. 2010, 46, 1766–1768.

    Google Scholar 

  27. Hirsch, A.; Englert, J. M.; Hauke, F. Wet chemical functionalization of graphene. Acc. Chem. Res. 2013, 46, 87–96.

    Google Scholar 

  28. Liu, J. Q.; Tang, J. G.; Gooding, J. J. Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 2012, 22, 12435–12452.

    Google Scholar 

  29. Park, J.; Yan, M. D. Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 2013, 46, 181–189.

    Google Scholar 

  30. Quintana, M.; Vazquez, E.; Prato, M. Organic functionalization of graphene in dispersions. Acc. Chem. Res. 2013, 46, 138–148.

    Google Scholar 

  31. Maiti, U. N.; Lee, W. J.; Lee, J. M.; Oh, Y.; Kim, J. Y.; Kim, J. E.; Shim, J.; Han, T. H.; Kim, S. O. 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 2014, 26, 40–67.

    Google Scholar 

  32. Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150.

    Google Scholar 

  33. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Google Scholar 

  34. Krishnamoorthy, K.; Kim, G. S.; Kim, S. J. Graphene nanosheets: Ultrasound assisted synthesis and characterization. Ultrason. Sonochem. 2013, 20, 644–649.

    Google Scholar 

  35. Green, A. A.; Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 2009, 9, 4031–4036.

    Google Scholar 

  36. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Google Scholar 

  37. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.

    Google Scholar 

  38. Zhang, Y.; Zhang, L. Y.; Zhou, C. W. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329–2339.

    Google Scholar 

  39. Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334.

    Google Scholar 

  40. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Google Scholar 

  41. Sutter, P. Epitaxial graphene: How silicon leaves the scene. Nat. Mater. 2009, 8, 171–172.

    Google Scholar 

  42. Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

    Google Scholar 

  43. Varykhalov, A.; Rader, O. Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence. Phys. Rev. B 2009, 80, 035437.

    Google Scholar 

  44. Yamada, T.; Kim, J.; Ishihara, M.; Hasegawa, M. Low-temperature graphene synthesis using microwave plasma CVD. J. Phys. D: Appl. Phys. 2013, 46, 063001.

    Google Scholar 

  45. Varchon, F.; Feng, R.; Hass, J.; Li, X.; Ngoc Nguyen, B.; Naud, C.; Mallet, P.; Veuillen, J. Y.; Berger, C.; Conrad, E. H. et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805.

    Google Scholar 

  46. Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.

    Google Scholar 

  47. Park, S.; An, J; Jung, I.; Piner, R. D.; An, S. J.; Li, X. S.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

    Google Scholar 

  48. Wu, Y. H.; Yu, T.; Shen, Z. X. Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 2010, 108, 071301.

    Google Scholar 

  49. Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

    Google Scholar 

  50. Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.

    Google Scholar 

  51. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Google Scholar 

  52. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Google Scholar 

  53. Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y. et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992.

    Google Scholar 

  54. Sheshmani, S.; Fashapoyeh, M. A. Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. Acta Chim. Slov. 2013, 60, 813–825.

    Google Scholar 

  55. Wang, S.; Chia, P. J.; Chua, L. L.; Zhao, L. H.; Png, R. Q.; Sivaramakrishnan, S.; Zhou, M.; Goh, R. G. S.; Friend, R. H.; Wee, A. T. S. et al. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv. Mater. 2008, 20, 3440–3446.

    Google Scholar 

  56. Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490–4493.

    Google Scholar 

  57. Pham, V. H.; Cuong, T. V.; Nguyen-Phan, T. D.; Pham, H. D.; Kim, E. J.; Hur, S. H.; Shin, E. W.; Kim, S.; Chung, J. S. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem. Commun. 2010, 46, 4375–4377.

    Google Scholar 

  58. Zhou, X. J.; Zhang, J. L.; Wu, H. X.; Yang, H. J.; Zhang, J. Y.; Guo, S. W. Reducing graphene oxide via hydroxylamine: A simple and efficient route to graphene. J. Phys. Chem. C 2011, 115, 11957–11961.

    Google Scholar 

  59. Zhu, C. Z.; Guo, S. J.; Fang, Y. X.; Dong, S. J. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437.

    Google Scholar 

  60. Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

    Google Scholar 

  61. McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Google Scholar 

  62. Compton, O. C.; Jain, B.; Dikin, D. A.; Abouimrane, A.; Amine, K.; Nguyen, S. T. Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano 2011, 5, 4380–4391.

    Google Scholar 

  63. Sundaram, R. S.; Gómez-Navarro, C.; Balasubramanian, K.; Burghard, M.; Kern, K. Electrochemical modification of graphene. Adv. Mater. 2008, 20, 3050–3053.

    Google Scholar 

  64. Zhou, M.; Wang, Y. L.; Zhai, Y. M.; Zhai, J. F.; Ren, W.; Wang, F. A.; Dong, S. J. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem.-Eur. J. 2009, 15, 6116–6120.

    Google Scholar 

  65. Rao, C. N. R.; Subrahmanyam, K. S.; Ramakrishna Matte, H. S. S.; Abdulhakeem, B.; Govindaraj, A.; Das, B.; Kumar, P.; Ghosh, A.; Late, D. J. A study of the synthetic methods and properties of graphenes. Sci. Technol. Adv. Mater. 2010, 11, 054502.

    Google Scholar 

  66. Zhang, Y. L.; Guo, L.; Xia, H.; Chen, Q. D.; Feng, J.; Sun, H. B. Photoreduction of graphene oxides: Methods, properties, and applications. Adv. Opt. Mater. 2014, 2, 10–28.

    Google Scholar 

  67. Novoselov, K. S.; Morozov, S. V.; Mohinddin, T. M. G.; Ponomarenko, L. A.; Elias, D. C.; Yang, R.; Barbolina, I. I.; Blake, P.; Booth, T. J.; Jiang, D. et al. Electronic properties of graphene. Phys. Status Solidi B 2007, 244, 4106–4111.

    Google Scholar 

  68. Ando, T. The electronic properties of graphene and carbon nanotubes. Npg Asia Mater. 2009, 1, 17–21.

    Google Scholar 

  69. Hwang, E. H.; Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 2008, 77, 115449.

    Google Scholar 

  70. Vasko, F. T.; Ryzhii, V. Voltage and temperature dependencies of conductivity in gated graphene. Phys. Rev. B 2007, 76, 233404.

    Google Scholar 

  71. Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.

    Google Scholar 

  72. Reddy, C. D.; Rajendran, S.; Liew, K. M. Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 2006, 17, 864–870.

    Google Scholar 

  73. Zhang, Y. Y.; Gu, Y. T. Mechanical properties of graphene: Effects of layer number, temperature and isotope. Comput. Mater. Sci. 2013, 71, 197–200.

    Google Scholar 

  74. Bertolazzi, S.; Brivio, J.; Radenovic, A.; Kis, A.; Wilson, H.; Prisbrey, L.; Minot, E.; Tselev, A.; Philips, M.; Viani, M. et al. Exploring flatland: AFM of mechanical and electrical properties of graphene, MoS2 and other low-dimensional materials. Microsc. Anal. 2013, 27, 21–24.

    Google Scholar 

  75. Frank, I. W.; Tanenbaum, D. M.; van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561.

    Google Scholar 

  76. Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Google Scholar 

  77. Gómez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049.

    Google Scholar 

  78. Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493.

    Google Scholar 

  79. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.

    Google Scholar 

  80. Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W. et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.

    Google Scholar 

  81. Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

    Google Scholar 

  82. Chen, J. H.; Ishigami, M.; Jang, C.; Hines, D. R.; Fuhrer, M. S.; Williams, E. D. Printed graphene circuits. Adv. Mater. 2007, 19, 3623–3627.

    Google Scholar 

  83. Koh, W. S.; Gan, C. H.; Phua, W. K.; Akimov, Y. A.; Bai, P. The potential of graphene as an ITO replacement in organic solar cells: An optical perspective. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 4000107.

    Google Scholar 

  84. Pang, S. P.; Hernandez, Y.; Feng, X. L.; Müllen, K. Graphene as transparent electrode material for organic electronics. Adv. Mater. 2011, 23, 2779–2795.

    Google Scholar 

  85. Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.

    Google Scholar 

  86. Shen, Y.; Yang, S. B.; Zhou, P.; Sun, Q. Q.; Wang, P. F.; Wan, L.; Li, J.; Chen, L. Y.; Wang, X.; Ding, S. J. et al. Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon 2013, 62, 157–164.

    Google Scholar 

  87. Pop, E.; Varshney, V.; Roy, A. K. Thermal properties of graphene: Fundamentals and applications. MRS Bull. 2012, 37, 1273–1281.

    Google Scholar 

  88. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Google Scholar 

  89. Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555–558.

    Google Scholar 

  90. Ghosh, S.; Nika, D. L.; Pokatilov, E. P.; Balandin, A. A. Heat conduction in graphene: Experimental study and theoretical interpretation. New J. Phys. 2009, 11, 095012.

    Google Scholar 

  91. Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 2010, 4, 1949–1954.

    Google Scholar 

  92. Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131, 1336–1337.

    Google Scholar 

  93. Jin, Z.; Lomeda, J. R.; Katherine Price, B.; Lu, W.; Zhu, Y.; Tour, J. M. Mechanically assisted exfoliation and functionalization of thermally converted graphene sheets. Chem. Mater. 2009, 21, 3045–3047.

    Google Scholar 

  94. Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.

    Google Scholar 

  95. Sharma, R.; Baik, J. H.; Perera, C. J.; Strano, M. S. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 2010, 10, 398–405.

    Google Scholar 

  96. Zakir Hossain, M.; Walsh, M. A.; Hersam, M. C. Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. J. Am. Chem. Soc. 2010, 132, 15399–15403.

    Google Scholar 

  97. Fang, M.; Wang, K. G.; Lu, H. B.; Yang, Y. L.; Nutt, S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 2009, 19, 7098–7105.

    Google Scholar 

  98. Feng, Y. Y.; Liu, H. P.; Luo, W.; Liu, E. Z.; Zhao, N. Q.; Yoshino, K.; Feng, W. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage. Sci. Rep. 2013, 3, 3260.

    Google Scholar 

  99. Liu, H. T.; Ryu, S.; Chen, Z. Y.; Steigerwald, M. L.; Nuckolls, C.; Brus, L. E. Photochemical reactivity of graphene. J. Am. Chem. Soc. 2009, 131, 17099–17101.

    Google Scholar 

  100. Wang, Q. H.; Shih, C. J.; Paulus, G. L. C.; Strano, M. S. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization. J. Am. Chem. Soc. 2013, 135, 18866–18875.

    Google Scholar 

  101. Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 2009, 5, 1841–1845.

    Google Scholar 

  102. Cioffi, C.; Campidelli, S.; Brunetti, F. G.; Meneghetti, M.; Prato, M. Functionalisation of carbon nanohorns. Chem. Commun. 2006, 2129–2131.

    Google Scholar 

  103. Georgakilas, V.; Bourlinos, A.; Gournis, D.; Tsoufis, T.; Trapalis, C.; Mateo-Alonso, A.; Prato, M. Multipurpose organically modified carbon nanotubes: From functionalization to nanotube composites. J. Am. Chem. Soc. 2008, 130, 8733–8740.

    Google Scholar 

  104. Castelaín, M.; Martínez, G.; Merino, P.; Martín-Gago, J. Á.; Segura, J. L.; Ellis, G.; Salavagione, H. J. Graphene functionalisation with a conjugated poly(fluorene) by click coupling: Striking electronic properties in solution. Chem. -Eur. J. 2012, 18, 4965–4973.

    Google Scholar 

  105. Zhang, X. Y.; Hou, L. L.; Cnossen, A.; Coleman, A. C.; Ivashenko, O.; Rudolf, P.; van Wees, B. J.; Browne, W. R.; Feringa, B. L. One-pot functionalization of graphene with porphyrin through cycloaddition reactions. Chem. -Eur. J. 2011, 17, 8957–8964.

    Google Scholar 

  106. Quintana, M.; Spyrou, K.; Grzelczak, M.; Browne, W. R.; Rudolf, P.; Prato, M. Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 2010, 4, 3527–3533.

    Google Scholar 

  107. Liu, L. H.; Lerner, M. M.; Yan, M. D. Derivitization of pristine graphene with well-defined chemical functionalities. Nano Lett. 2010, 10, 3754–3756.

    Google Scholar 

  108. Strom, T. A.; Dillon, E. P.; Hamilton, C. E.; Barron, A. R. Nitrene addition to exfoliated graphene: A one-step route to highly functionalized graphene. Chem. Commun. 2010, 46, 4097–4099.

    Google Scholar 

  109. Xu, L. Q.; Yee, Y. K.; Neoh, K. G.; Kang, E. T.; Fu, G. D. Cyclodextrin-functionalized graphene nanosheets, and their host-guest polymer nanohybrids. Polymer 2013, 54, 2264–2271.

    Google Scholar 

  110. He, H. K.; Gao, C. General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater. 2010, 22, 5054–5064.

    Google Scholar 

  111. Choi, J.; Kim, K. J.; Kim, B.; Lee, H.; Kim, S. Covalent functionalization of epitaxial graphene by azidotrimethylsilane. J. Phys. Chem. C 2009, 113, 9433–9435.

    Google Scholar 

  112. Zhong, X.; Jin, J.; Li, S. W.; Niu, Z. Y.; Hu, W. Q.; Li, R.; Ma, J. T. Aryne cycloaddition: Highly efficient chemical modification of graphene. Chem. Commun. 2010, 46, 7340–7342.

    Google Scholar 

  113. Sarkar, S.; Bekyarova, E.; Niyogi, S.; Haddon, R. C. Diels-Alder chemistry of graphite and graphene: Graphene as diene and dienophile. J. Am. Chem. Soc. 2011, 133, 3324–3327.

    Google Scholar 

  114. Mallakpour, S.; Abdolmaleki, A.; Borandeh, S. Covalently functionalized graphene sheets with biocompatible natural amino acids. Appl. Surf. Sci. 2014, 307, 533–542.

    Google Scholar 

  115. Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

    Google Scholar 

  116. Yang, K.; Zhang, S. A.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. A. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

    Google Scholar 

  117. Fan, Z. J.; Wang, J. Q.; Wang, Z. F.; Li, Z. P.; Qiu, Y. N.; Wang, H. G.; Xu, Y.; Niu, L. Y.; Gong, P. W.; Yang, S. R. Casein phosphopeptide-biofunctionalized graphene biocomposite for hydroxyapatite biomimetic mineralization. J. Phys. Chem. C 2013, 117, 10375–10382.

    Google Scholar 

  118. Depan, D.; Pesacreta, T. C.; Misra, R. D. K. The synergistic effect of a hybrid graphene oxide-chitosan system and biomimetic mineralization on osteoblast functions. Biomater Sci-Uk 2014, 2, 264–274.

    Google Scholar 

  119. Liu, H. Y.; Kuila, T.; Kim, N. H.; Ku, B. C.; Lee, J. H. In situ synthesis of the reduced graphene oxide-polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A 2013, 1, 3739–3746.

    Google Scholar 

  120. Liu, Y.; Li, Q.; Feng, Y. Y.; Ji, G. S.; Li, T. C.; Tu, J.; Gu, X. D. Immobilisation of acid pectinase on graphene oxide nanosheets. Chem. Pap. 2014, 68, 732–738.

    Google Scholar 

  121. Shan, C. S.; Yang, H. F.; Han, D. X.; Zhang, Q. X.; Ivaska, A.; Niu, L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 2009, 25, 12030–12033.

    Google Scholar 

  122. Liu, H. D.; Liu, Z. Y.; Yang, M. B.; He, Q. Surperhydrophobic polyurethane foam modified by graphene oxide. J. Appl. Polym. Sci. 2013, 130, 3530–3536.

    Google Scholar 

  123. Karousis, N.; Sandanayaka, A. S. D.; Hasobe, T.; Economopoulos, S. P.; Sarantopoulou, E.; Tagmatarchis, N. Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties. J. Mater. Chem. 2011, 21, 109–117.

    Google Scholar 

  124. Liu, Z. B.; Xu, Y. F.; Zhang, X. Y.; Zhang, X. L.; Chen, Y. S.; Tian, J. G. Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B 2009, 113, 9681–9686.

    Google Scholar 

  125. Zhu, J. H.; Li, Y. X.; Chen, Y.; Wang, J.; Zhang, B.; Zhang, J. J.; Blau, W. J. Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 2011, 49, 1900–1905.

    Google Scholar 

  126. Long, F.; Zhu, A. N.; Shi, H. C.; Wang, H. C. Hapten-grafted graphene as a transducer for homogeneous competitive immunoassay of small molecules. Anal. Chem. 2014, 86, 2862–2866.

    Google Scholar 

  127. Konkena, B.; Vasudevan, S. Covalently linked, water-dispersible, cyclodextrin: Reduced-graphene oxide sheets. Langmuir 2012, 28, 12432–12437.

    Google Scholar 

  128. Xue, Y. H.; Liu, Y.; Lu, F.; Qu, J.; Chen, H.; Dai, L. M. Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J. Phys. Chem. Lett. 2012, 3, 1607–1612.

    Google Scholar 

  129. Yu, D. S.; Yang, Y.; Durstock, M.; Baek, J. B.; Dai, L. M. Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano 2010, 4, 5633–5640.

    Google Scholar 

  130. Kumar, N. A.; Choi, H. J.; Shin, Y. R.; Chang, D. W.; Dai, L. M.; Baek, J. B. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 2012, 6, 1715–1723.

    Google Scholar 

  131. Devi, R.; Prabhavathi, G.; Yamuna, R.; Ramakrishnan, S.; Kothurkar, N. K. Synthesis, characterization and photoluminescence properties of graphene oxide functionalized with azo molecules. J. Chem. Sci. 2014, 126, 75–83.

    Google Scholar 

  132. Sayyar, S.; Murray, E.; Thompson, B. C.; Gambhir, S.; Officer, D. L.; Wallace, G. G. Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 2013, 52, 296–304.

    Google Scholar 

  133. Cheng, H. K. F.; Sahoo, N. G.; Tan, Y. P.; Pan, Y. Z.; Bao, H. Q.; Li, L.; Chan, S. H.; Zhao, J. H. Poly(vinyl alcohol) nanocomposites filled with poly(vinyl alcohol)-grafted graphene oxide. ACS Appl. Mater. Inter. 2012, 4, 2387–2394.

    Google Scholar 

  134. Shen, J. F.; Li, N.; Shi, M.; Hu, Y. Z.; Ye, M. X. Covalent synthesis of organophilic chemically functionalized graphene sheets. J. Colloid Interf. Sci. 2010, 348, 377–383.

    Google Scholar 

  135. Li, W. X.; Xu, Z. W.; Chen, L.; Shan, M. J.; Tian, X.; Yang, C. Y.; Lv, H. M.; Qian, X. M. A facile method to produce graphene oxide-g-poly(L-lactic acid) as an promising reinforcement for PLLA nanocomposites. Chem. Eng. J. 2014, 237, 291–299.

    Google Scholar 

  136. Lo, C. W.; Zhu, D. F.; Jiang, H. R. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter. 2011, 7, 5604–5609.

    Google Scholar 

  137. Xu, G. B.; Chen, X. Y.; Hu, J. H.; Yang, P. Y.; Yang, D.; Wei, L. M. Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis. Analyst 2012, 137, 2757–2761.

    Google Scholar 

  138. Zhou, J. T.; Yao, Z. J.; Chen, Y. X.; Wei, D. B.; Xu, T. S. Fabrication and mechanical properties of phenolic foam reinforced with graphene oxide. Polym. Composite 2014, 35, 581–586.

    Google Scholar 

  139. Gaspar, H.; Pereira, C.; Rebelo, S. L. H.; Pereira, M. F. R.; Figueiredo, J. L.; Freire, C. Understanding the silylation reaction of multi-walled carbon nanotubes. Carbon 2011, 49, 3441–3453.

    Google Scholar 

  140. Matsuo, Y.; Fukunaga, T.; Fukutsuka, T.; Sugie, Y. Silylation of graphite oxide. Carbon 2004, 42, 2117–2119.

    Google Scholar 

  141. Yang, H. F.; Li, F. H.; Shan, C. S.; Han, D. X.; Zhang, Q. X.; Niu, L.; Ivaska, A. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater. Chem. 2009, 19, 4632–4638.

    Google Scholar 

  142. Chen, L.; Jin, H.; Xu, Z. W.; Shan, M. J.; Tian, X.; Yang, C. Y.; Wang, Z.; Cheng, B. W. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface. Mater. Chem. Phys. 2014, 145, 186–196.

    Google Scholar 

  143. Zhang, W. F.; Wang, S. S.; Ji, J. Y.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Primary and tertiary amines bifunctional graphene oxide for cooperative catalysis. Nanoscale 2013, 5, 6030–6033.

    Google Scholar 

  144. Hou, S. F.; Su, S. J.; Kasner, M. L.; Shah, P.; Patel, K.; Madarang, C. J. Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem. Phys. Lett. 2010, 501, 68–74.

    Google Scholar 

  145. Lin, Y.; Jin, J.; Song, M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 2011, 21, 3455–3461.

    Google Scholar 

  146. Yuan, F. Y.; Zhang, H. B.; Li, X. F.; Ma, H. L.; Li, X. Z.; Yu, Z. Z. In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 2014, 68, 653–661.

    Google Scholar 

  147. Wu, L. S.; Zhang, B. Q.; Lu, H.; Liu, C. Y. Nanoscale ionic materials based on hydroxyl-functionalized graphene. J. Mater. Chem. A 2014, 2, 1409–1417.

    Google Scholar 

  148. Ballesteros-Garrido, R.; Rodriguez, R.; Alvaro, M.; Garcia, H. Photochemistry of covalently functionalized graphene oxide with phenothiazinyl units. Carbon 2014, 74, 113–119.

    Google Scholar 

  149. Zhang, H. C.; Ma, X.; Nguyen, K. T.; Zeng, Y. F.; Tai, S. H.; Zhao, Y. L. Water-soluble pillararene-functionalized graphene oxide for in vitro Raman and fluorescence dual-mode imaging. ChemPlusChem 2014, 79, 462–469.

    Google Scholar 

  150. Park, S.; Hu, Y.; Hwang, J. O.; Lee, E. S.; Casabianca, L. B.; Cai, W. W.; Potts, J. R.; Ha, H. W.; Chen, S. S.; Oh, J. et al. Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat. Commun. 2012, 3, 638.

    Google Scholar 

  151. Gilje, S.; Dubin, S.; Badakhshan, A.; Farrar, J.; Danczyk, S. A.; Kaner, R. B. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater. 2010, 22, 419–423.

    Google Scholar 

  152. Boukhvalov, D. W.; Katsnelson, M. I. Chemical functionalization of graphene with defects. Nano Lett. 2008, 8, 4373–4379.

    Google Scholar 

  153. Gao, X. F.; Jang, J.; Nagase, S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 2010, 114, 832–842.

    Google Scholar 

  154. Ghaderi, N.; Peressi, M. First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide. J. Phys. Chem. C 2010, 114, 21625–21630.

    Google Scholar 

  155. Iqbal, M. Z.; Katsiotis, M. S.; Alhassan, S. M.; Liberatore, M. W.; Abdala, A. A. Effect of solvent on the uncatalyzed synthesis of aminosilane-functionalized graphene. RSC Adv. 2014, 4, 6830–6839.

    Google Scholar 

  156. Wang, D. R.; Ye, G.; Wang, X. L.; Wang, X. G. Graphene functionalized with Azo polymer brushes: Surface-initiated polymerization and photoresponsive properties. Adv. Mater. 2011, 23, 1122–1125.

    Google Scholar 

  157. Azevedo, J.; Fillaud, L.; Bourdillon, C.; Noel, J. M.; Kanoufi, F.; Jousselme, B.; Derycke, V.; Campidelli, S.; Cornut, R. Localized reduction of graphene oxide by electrogenerated naphthalene radical anions and subsequent diazonium electrografting. J. Am. Chem. Soc. 2014, 136, 4833–4836.

    Google Scholar 

  158. Srinivas, G.; Burress, J. W.; Ford, J.; Yildirim, T. Porous graphene oxide frameworks: Synthesis and gas sorption properties. J. Mater. Chem. 2011, 21, 11323–11329.

    Google Scholar 

  159. Sudeep, P. M.; Narayanan, T. N.; Ganesan, A.; Shaijumon, M. M.; Yang, H.; Ozden, S.; Patra, P. K.; Pasquali, M.; Vajtai, R.; Ganguli, S. et al. Covalently interconnected three-dimensional graphene oxide solids. ACS Nano 2013, 7, 7034–7040.

    Google Scholar 

  160. Hsiao, M. C.; Liao, S. H.; Yen, M. Y.; Liu, P. I.; Pu, N. W.; Wang, C. A.; Ma, C. C. M. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl. Mater. Inter. 2010, 2, 3092–3099.

    Google Scholar 

  161. Mann, J. A.; Dichtel, W. R. Noncovalent functionalization of graphene by molecular and polymeric adsorbates. J. Phys. Chem. Lett. 2013, 4, 2649–2657.

    Google Scholar 

  162. Mann, J. A.; Rodriguez-Lopez, J.; Abruna, H. D.; Dichtel, W. R. Multivalent binding motifs for the noncovalent functionalization of graphene. J. Am. Chem. Soc. 2011, 133, 17614–17617.

    Google Scholar 

  163. Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.

    Google Scholar 

  164. Kozlov, S. M.; Vines, F.; Gorling, A. On the interaction of polycyclic aromatic compounds with graphene. Carbon 2012, 50, 2482–2492.

    Google Scholar 

  165. Parviz, D.; Das, S.; Ahmed, H. S. T.; Irin, F.; Bhattacharia, S.; Green, M. J. Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 2012, 6, 8857–8867.

    Google Scholar 

  166. Su, Q.; Pang, S. P.; Alijani, V.; Li, C.; Feng, X. L.; Mullen, K. Composites of graphene with large aromatic molecules. Adv. Mater. 2009, 21, 3191–3195.

    Google Scholar 

  167. Bose, S.; Kuila, T.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology 2011, 22, 405603.

    Google Scholar 

  168. Geng, J. X.; Jung, H. T. Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films. J. Phys. Chem. C 2010, 114, 8227–8234.

    Google Scholar 

  169. Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. J. Am. Chem. Soc. 2009, 131, 13490–13497.

    Google Scholar 

  170. Xue, T.; Peng, B.; Xue, M.; Zhong, X.; Chiu, C. Y.; Yang, S.; Qu, Y. Q.; Ruan, L. Y.; Jiang, S.; Dubin, S. et al. Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nat. Commun. 2014, 5, 3200.

    Google Scholar 

  171. Qu, S. X.; Li, M. H.; Xie, L. X.; Huang, X.; Yang, J. G.; Wang, N.; Yang, S. F. Noncovalent functionalization of graphene attaching [6,6]-Phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells. ACS Nano 2013, 7, 4070–4081.

    Google Scholar 

  172. Lee, D. W.; Kim, T.; Lee, M. An amphiphilic pyrene sheet for selective functionalization of graphene. Chem. Commun. 2011, 47, 8259–8261.

    Google Scholar 

  173. Zhang, M.; Parajuli, R. R.; Mastrogiovanni, D.; Dai, B.; Lo, P.; Cheung, W.; Brukh, R.; Chiu, P. L.; Zhou, T.; Liu, Z. F. et al. Production of graphene sheets by direct dispersion with aromatic healing agents. Small 2010, 6, 1100–1107.

    Google Scholar 

  174. Zheng, X. L.; Xu, Q.; Li, J. B.; Li, L. H.; Wei, J. Y. High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers. RSC Adv. 2012, 2, 10632–10638.

    Google Scholar 

  175. Lin, S. C.; Buehler, M. J. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification. Nanoscale 2013, 5, 11801–11807.

    Google Scholar 

  176. Schlierf, A.; Yang, H. F.; Gebremedhn, E.; Treossi, E.; Ortolani, L.; Chen, L. P.; Minoia, A.; Morandi, V.; Samori, P.; Casiraghi, C. et al. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: Effect of charge, dipole and molecular structure. Nanoscale 2013, 5, 4205–4216.

    Google Scholar 

  177. Basiuk, E. V.; Martinez-Herrera, M.; Alvarez-Zauco, E.; Henao-Holguin, L. V.; Puente-Lee, I.; Basiuk, V. A. Noncovalent functionalization of graphene with a Ni(II) tetraaza[14] annulene complex. Dalton Trans. 2014, 43, 7413–7428.

    Google Scholar 

  178. Bjork, J.; Hanke, F.; Palma, C. A.; Samori, P.; Cecchini, M.; Persson, M. Adsorption of aromatic and anti-aromatic systems on graphene through pi-pi stacking. J. Phys. Chem. Lett. 2010, 1, 3407–3412.

    Google Scholar 

  179. Rourke, J. P.; Pandey, P. A.; Moore, J. J.; Bates, M.; Kinloch, I. A.; Young, R. J.; Wilson, N. R. The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 2011, 50, 3173–3177.

    Google Scholar 

  180. Coluci, V. R.; Martinez, D. S. T.; Honorio, J. G.; de Faria, A. F.; Morales, D. A.; Skaf, M. S.; Alves, O. L.; Umbuzeiro, G. A. Noncovalent interaction with graphene oxide: The crucial role of oxidative debris. J. Phys. Chem. C 2014, 118, 2187–2193.

    Google Scholar 

  181. Liang, Y. Y.; Wu, D. Q.; Feng, X. L.; Mullen, K. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 2009, 21, 1679–1683.

    Google Scholar 

  182. Pu, N. W.; Wang, C. A.; Liu, Y. M.; Sung, Y.; Wang, D. S.; Ger, M. D. Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating. J. Taiwan. Inst. Chem. E 2012, 43, 140–146.

    Google Scholar 

  183. Fernandez-Merino, M. J.; Paredes, J. I.; Villar-Rodil, S.; Guardia, L.; Solis-Fernandez, P.; Salinas-Torres, D.; Cazorla-Amoros, D.; Morallon, E.; Martinez-Alonso, A.; Tascon, J. M. D. Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon 2012, 50, 3184–3194.

    Google Scholar 

  184. Khare, V.; Pham, M. Q.; Kumari, N.; Yoon, H. S.; Kim, C. S.; Park, J. I.; Ahn, S. H. Graphene-ionic liquid based hybrid nanomaterials as novel lubricant for low friction and wear. ACS Appl. Mater. Inter. 2013, 5, 4063–4075.

    Google Scholar 

  185. Ma, W. S.; Wu, L.; Yang, F.; Wang, S. F. Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J. Mater. Sci. 2014, 49, 562–571.

    Google Scholar 

  186. Yang, Y. K.; He, C. E.; Peng, R. G.; Baji, A.; Du, X. S.; Huang, Y. L.; Xie, X. L.; Mai, Y. W. Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J. Mater. Chem. 2012, 22, 5666–5675.

    Google Scholar 

  187. ul Hasan, K.; Sandberg, M. O.; Nur, O.; Willander, M. Polycation stabilization of graphene suspensions. Nanoscale. Res. Lett. 2011, 6, 493.

    Google Scholar 

  188. Lonkar, S. P.; Bobenrieth, A.; De Winter, J.; Gerbaux, P.; Raquez, J. M.; Dubois, P. A supramolecular approach toward organo-dispersible graphene and its straightforward polymer nanocomposites. J. Mater. Chem. 2012, 22, 18124–18126.

    Google Scholar 

  189. Li, Y. P.; Han, G. Y. Ionic liquid-functionalized graphene for fabricating an amperometric acetylcholinesterase biosensor (Retraction of vol 137, pg 3160, 2012). Analyst 2013, 138, 7422.

    Google Scholar 

  190. Choi, E. Y.; Han, T. H.; Hong, J. H.; Kim, J. E.; Lee, S. H.; Kim, H. W.; Kim, S. O. Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem. 2010, 20, 1907–1912.

    Google Scholar 

  191. Yang, Q.; Pan, X. J.; Huang, F.; Li, K. C. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J. Phys. Chem. C 2010, 114, 3811–3816.

    Google Scholar 

  192. Lee, D. Y.; Khatun, Z.; Lee, J. H.; Lee, Y. K.; In, I. Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromolecules 2011, 12, 336–341.

    Google Scholar 

  193. Zhang, Y.; Zhang, J. Y.; Huang, X. L.; Zhou, X. J.; Wu, H. X.; Guo, S. W. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 2012, 8, 154–159.

    Google Scholar 

  194. Zhang, J. L.; Zhang, F.; Yang, H. J.; Huang, X. L.; Liu, H.; Zhang, J. Y.; Guo, S. W. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010, 26, 6083–6085.

    Google Scholar 

  195. Zhang, F.; Zheng, B.; Zhang, J. L.; Huang, X. L.; Liu, H.; Guo, S. W.; Zhang, J. Y. Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J. Phys. Chem. C 2010, 114, 8469–8473.

    Google Scholar 

  196. Mann, J. A.; Alava, T.; Craighead, H. G.; Dichtel, W. R. Preservation of antibody selectivity on graphene by conjugation to a tripod monolayer. Angew. Chem. Int. Ed. 2013, 52, 3177–3180.

    Google Scholar 

  197. Alwarappan, S.; Boyapalle, S.; Kumar, A.; Li, C. Z.; Mohapatra, S. Comparative study of single-, few-, and multi layered graphene toward enzyme conjugation and electrochemical response. J. Phys. Chem. C 2012, 116, 6556–6559.

    Google Scholar 

  198. De, M.; Chou, S. S.; Dravid, V. P. Graphene oxide as an enzyme inhibitor: Modulation of activity of alpha-chymotrypsin. J. Am. Chem. Soc. 2011, 133, 17524–17527.

    Google Scholar 

  199. Kodali, V. K.; Scrimgeour, J.; Kim, S.; Hankinson, J. H.; Carroll, K. M.; de Heer, W. A.; Berger, C.; Curtis, J. E. Nonperturbative Chemical Modification of Graphene for Protein Micropatterning. Langmuir 2011, 27, 863–865.

    Google Scholar 

  200. Liu, K. H.; Chen, S. L.; Luo, Y. F.; Jia, D. M.; Gao, H.; Hu, G. J.; Liu, L. Noncovalently functionalized pristine graphene/metal nanoparticle hybrid for conductive composites. Compos. Sci. Technol. 2014, 94, 1–7.

    Google Scholar 

  201. Lu, G. H.; Mao, S.; Park, S.; Ruoff, R. S.; Chen, J. H. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res. 2009, 2, 192–200.

    Google Scholar 

  202. Zhu, G. X.; Liu, Y. J.; Xu, Z.; Jiang, T. A.; Zhang, C.; Li, X.; Qi, G. Flexible magnetic nanoparticles-reduced graphene oxide composite membranes formed by self-Assembly in solution. ChemPhysChem 2010, 11, 2432–2437.

    Google Scholar 

  203. Ma, X.; Qu, Q. Y.; Zhao, Y.; Luo, Z.; Zhao, Y.; Ng, K. W.; Zhao, Y. L. Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. J. Mater. Chem. B 2013, 1, 6495–6500.

    Google Scholar 

  204. Fullerton, R. J.; Cole, D. P.; Behler, K. D.; Das, S.; Irin, F.; Parviz, D.; Hoque, M. N. F.; Fan, Z. Y.; Green, M. J. Graphene non-covalently tethered with magnetic nanoparticles. Carbon 2014, 72, 192–199.

    Google Scholar 

  205. Lu, W. B.; Ning, R.; Qin, X. Y.; Zhang, Y. W.; Chang, G. H.; Liu, S.; Luo, Y. L.; Sun, X. P. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. J. Hazard. Mater. 2011, 197, 320–326.

    Google Scholar 

  206. Dutta, S.; Ray, C.; Sarkar, S.; Pradhan, M.; Negishi, Y.; Pal, T. Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: A platform for SERS based low-level detection of uranyl ion. ACS Appl. Mater. Inter. 2013, 5, 8724–8732.

    Google Scholar 

  207. Chen, X. J.; Yasin, F. M.; Eggers, P. K.; Boulos, R. A.; Duan, X. F.; Lamb, R. N.; Iyer, K. S.; Raston, C. L. Non-covalently modified graphene supported ultrafine nanoparticles of palladium for hydrogen gas sensing. RSC Adv. 2013, 3, 3213–3217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Abdala.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lonkar, S.P., Deshmukh, Y.S. & Abdala, A.A. Recent advances in chemical modifications of graphene. Nano Res. 8, 1039–1074 (2015). https://doi.org/10.1007/s12274-014-0622-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0622-9

Keywords

Navigation