Skip to main content
Log in

A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron–hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, C. W.; Fan, H. J. Branched nanowires: Synthesis and energy applications. Nano Today 2012, 7, 327–343.

    Article  Google Scholar 

  2. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  Google Scholar 

  3. Liu, D.; Li, L. L.; Gao, Y.; Wang, C. M.; Jiang, J.; Xiong, Y. J. The nature of photocatalytic “water splitting” on silicon nanowires. Angew. Chem., Int. Ed. 2015, 54, 2980–2985.

    Article  Google Scholar 

  4. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  5. Liu, J.; Wang, H. Q.; Chen Z. P.; Moehwald, H.; Fiechter, S.; van der Krol, R.; Wen, L. P.; Jiang, L.; Antonietti, M. Microcontactprinting- assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv. Mater. 2015, 27, 712–718.

    Article  Google Scholar 

  6. Xie, M. Z.; Fu, X. D.; Jing, L. Q.; Luan, P.; Feng, Y. J.; Fu, H. G. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 2014, 4, DOI: 10.1002/aenm.201300995.

    Google Scholar 

  7. Kim, J. Y.; Jang, J. W.; Youn, D. H.; Magesh, G.; Lee, J. S. A stable and efficient hematite photoanode in a neutral electrolyte for solar water splitting: Towards stability engineering. Adv. Energy Mater. 2014, 4, DOI: 10.1002/ aenm.201400476.

    Google Scholar 

  8. Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014, 26, 3297–3303.

    Article  Google Scholar 

  9. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    Article  Google Scholar 

  10. Zhang, X.; Liu, Y.; Kang, Z. H. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for highperformance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 4480–4489.

    Article  Google Scholar 

  11. Noh, S. Y.; Sun, K.; Choi, C.; Niu, M. T.; Yang, M. C.; Xu, K.; Jin, S. B.; Wang, D. L. Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting. Nano Energy 2013, 2, 351–360.

    Article  Google Scholar 

  12. Yu, R.; Lin, Q. F.; Leung, S. F.; Fan, Z. Y. Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 2012, 1, 57–72.

    Article  Google Scholar 

  13. Sun, K.; Jing, Y.; Li, C.; Zhang, X. F.; Aguinaldo, R.; Kargar, A.; Madsen, K.; Banu, K.; Zhou, Y. C.; Bando, Y. et al. 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation. Nanoscale 2012, 4, 1515–1521.

    Article  Google Scholar 

  14. Hwang, Y. J.; Boukai, A.; Yang, P. D. High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 2009, 9, 410–415.

    Article  Google Scholar 

  15. Shi, J.; Hara, Y.; Sun, C. L.; Anderson, M. A.; Wang, X. D. Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Nano Lett. 2011, 11, 3413–3419.

    Article  Google Scholar 

  16. Hwang, Y. J.; Wu, C. H.; Hahn, C.; Jeong, H. E; Yang, P. D. Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties. Nano Lett. 2012, 12, 1678–1682.

    Article  Google Scholar 

  17. Wang, X.; Peng, K. Q.; Hu, Y.; Zhang, F. Q.; Hu, B.; Li, L.; Wang, M.; Meng, X. M.; Lee, S. T. Silicon/hematite core/ shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Lett. 2014, 14, 18–23.

    Article  Google Scholar 

  18. Sheng, W. J.; Sun, B.; Shi, T. L.; Tan, X. H.; Peng, Z. C.; Liao, G. L. Quantum dot-sensitized hierarchical micro/ nanowire architecture for photoelectrochemical water splitting. ACS Nano 2014, 8, 7163–7169.

    Article  Google Scholar 

  19. Peng, S. J.; Zhu, P. N.; Mhaisalkar, S. G.; Ramakrishna, S. Self-supporting three-dimensional ZnIn2S4/PVDF-poly(MMAco- MAA) composite mats with hierarchical nanostructures for high photocatalytic activity. J. Phys. Chem. C 2012, 116, 13849–13857.

    Article  Google Scholar 

  20. Seo, W. S.; Otsuk, R.; Okuno, H.; Ohta, M.; Koumoto, K. Thermoelectric properties of sintered polycrystalline ZnIn2S4. J. Mater. Res. 1999, 14, 4176–4181.

    Article  Google Scholar 

  21. Romeo, N.; Dallaturca, A.; Braglia, R.; Sberveglieri, G. Charge storage in ZnIn2S4 single crystals. Appl. Phys. Lett. 1973, 22, 21–22.

    Article  Google Scholar 

  22. Peng, S. J.; Wu, Y. Z.; Zhu, P. N.; Thavasi, V.; Ramakrishna, S.; Mhaisalkar, S. G. Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films. J. Mater. Chem. 2011, 21, 15718–15726.

    Article  Google Scholar 

  23. Shen, S. H.; Chen, X. B.; Ren, F.; Kronawitter, C. X.; Mao, S. S.; Guo, L. J. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides. Nanoscale Res. Lett. 2011, 6, 290.

    Article  Google Scholar 

  24. Bai, Z. M.; Yan, X. Q.; Kang, Z.; Hu, Y. P.; Zhang, X. H.; Zhang, Y. Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy 2015, 14, 392–400.

    Article  Google Scholar 

  25. Lei, Z. B.; You, W. S.; Liu, M. Y.; Zhou, G. H.; Takata, T.; Hara, M.; Domen, K.; Li, C. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem. Commun. 2003, 17, 2142–2143.

    Article  Google Scholar 

  26. Shen, S. H.; Zhao, L.; Zhou, Z. H.; Guo, L. J. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. J. Phys. Chem. C 2008, 112, 16148–16155.

    Article  Google Scholar 

  27. Zhou, M.; Lou, X. W.; Xie, Y. Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. Nano Today 2013, 8, 598–618.

    Article  Google Scholar 

  28. Huang, Z. P.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285–308.

    Article  Google Scholar 

  29. Huang, Z.; Wang, C.; Chen, Z.; Meng, H.; Lv, C.; Chen, Z.; Han, R.; Zhang, C. Tungsten sulfide enhancing solar-driven hydrogen production from silicon nanowires. ACS Appl. Mater. Interfaces 2014, 6, 10408–10414.

    Article  Google Scholar 

  30. Peng, K. Q.; Xu, Y.; Wu, Y.; Yan, Y. J.; Lee, S. T.; Zhu, J. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005, 1, 1062–1067.

    Article  Google Scholar 

  31. Li, H. X.; Cheng, C. W.; Li, X. L.; Liu, J. P.; Guan, C.; Tay, Y. Y.; Fan, H. J. Composition-graded ZnxCd1–x Se@ZnO core-shell nanowire array electrodes for photoelectrochemical hydrogen generation. J. Phys. Chem. C 2012, 116, 3802–3807.

    Article  Google Scholar 

  32. Li, Y. B.; Takata, T.; Cha, D.; Takanabe, K.; Minegishi, T.; Kubota, J.; Domen, K. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv. Mater. 2013, 25, 125–131.

    Article  Google Scholar 

  33. Devarapalli, R. R.; Debgupta, J.; Pillai, V. K.; Shelke, M. V. C@SiNW/TiO2 core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting. Sci. Rep. 2014, 4, 4897.

    Article  Google Scholar 

  34. Shi, J.; Wang, X. D. Hierarchical TiO2-Si nanowire architecture with photoelectrochemical activity under visible light illumination. Energy Environ. Sci. 2012, 5, 7918–7922.

    Article  Google Scholar 

  35. Yu, H. T.; Chen, S.; Fan, X. F.; Quan, X.; Zhao, H. M.; Li, X. Y.; Zhang, Y. B. A structured macroporous silicon/graphene heterojunction for efficient photoconversion. Angew. Chem., Int. Ed. 2010, 49, 5106–5109.

    Article  Google Scholar 

  36. Bisquert, J. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 2002, 106, 325–333.

    Article  Google Scholar 

  37. Xu, B.; He, P. L.; Liu, H. L.; Wang, P. P.; Zhou, G.; Wang, X. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem., Int. Ed. 2014, 53, 2339–2343.

    Article  Google Scholar 

  38. Hahn, N. T.; Mullins, C. B. Photoelectrochemical performance of nanostructured Ti- and Sn-doped α-Fe2O3 photoanodes. Chem. Mater. 2010, 22, 6474–6482.

    Article  Google Scholar 

  39. Liu, Q.; Lu, H.; Shi, Z. W.; Wu, F. L.; Guo, J.; Deng, K. M.; Li, L. 2D ZnIn2S4 nanosheet/lD TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 17200–17207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Tian or Liang Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wu, F., Cao, F. et al. A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Res. 8, 3524–3534 (2015). https://doi.org/10.1007/s12274-015-0852-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0852-5

Keywords

Navigation