Skip to main content
Log in

Enhanced photoelectrochemical performance of n-Si/n-ZnO nanowire arrays using graphene interlayers

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report a powerful approach to improve the photoelectrochemical (PEC) performance of the Si/ZnO nanowire array (NWA) photoanodes via incorporating a graphene layer. The Si/Graphene/ZnO NWAs shows the highest photocurrent, which is, respectively, 1.6 times of that for the Si/ZnO NWAs, and 6.2 times of that for the Si wafers. The introducing of ZnO NWAs and graphene greatly reduces the light reflectance, especially in the UV light region. Carrier recombination at the effective n-Si/n-ZnO junction can compensate the high valence band level of Si and thus enhances the contribution of Si to the photocurrent. The graphene interlayers offer a fast passway for the photogenerated electrons in ZnO to recombine with the photogenerated holes in Si, resulting in enhanced PEC performance of the Si/graphene/ZnO NWAs. This study demonstrates the n/graphene/n heterojunction is a promising configuration for efficient solar water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Liu S, Tang ZR, Sun Y, Colmenares JC, Xu YJ (2015) One-dimension-based spatially ordered architectures for solar energy conversion. Chem Soc Rev 44:5053–5075

    Article  Google Scholar 

  2. Zhang T, Lin W (2014) Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993

    Article  Google Scholar 

  3. Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ Sci 9:709–728

    Article  Google Scholar 

  4. Wang J, Zhong HX, Wang ZL, Meng FL, Zhang XB (2016) Integrated three-dimensional carbon paper/carbon tubes/cobalt–sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10:2342–2348

    Article  Google Scholar 

  5. Frischmann PD, Mahata K, Wurthner F (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870

    Article  Google Scholar 

  6. Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518

    Article  Google Scholar 

  7. Bonke SA, Wiechen M, MacFarlane DR, Spiccia L (2015) Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ Sci 8:2791–2796

    Article  Google Scholar 

  8. Zhang R, Shao M, Xu S, Ning F, Zhou L, Wei M (2017) Photo-assisted synthesis of zinc–iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy 33:21–28

    Article  Google Scholar 

  9. Hikita Y, Nishio K, Seitz LC, Chakthranont P, Tachikawa T, Jaramillo TF, Hwang HY (2016) Band edge engineering of oxide photoanodes for photoelectrochemical water splitting: integration of subsurface dipoles with atomic-scale control. Adv Energy Mater 6:1502154

    Article  Google Scholar 

  10. Sun K, Jing Y, Li C, Zhang X, Aguinaldo R, Kargar A, Madsen K, Banu K, Zhou Y, Bando Y, Liu Z, Wang D (2012) 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation. Nanoscale 4:1515–1521

    Article  Google Scholar 

  11. Shi M, Pan X, Qiu W, Zheng D, Xu M, Chen H (2011) Si/ZnO core–shell nanowire arrays for photoelectrochemical water splitting. Int J Hydrogen Energy 36:15153–15159

    Article  Google Scholar 

  12. Kargar A, Sun K, Kim SJ, Lu D, Jing Y, Liu Z, Pan X, Wang D (2013) Three-dimensional ZnO/Si broom-like nanowire heterostructures as photoelectrochemical anodes for solar energy conversion. Phys Status Solidi A 210:2561–2568

    Article  Google Scholar 

  13. Bai Z, Zhang Y (2017) A Cu2O/Cu2S–ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting. J Alloy Compd 698:133–140

    Article  Google Scholar 

  14. Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9:2331–2336

    Article  Google Scholar 

  15. Chen HM, Chen CK, Chang YC, Tsai CW, Liu RS, Hu SF, Chang WS, Chen KH (2010) Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. Angew Chem 49:5966–5969

    Article  Google Scholar 

  16. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320

    Article  Google Scholar 

  17. Bai Z, Zhang Y (2016) CdS nanoparticles sensitized large-scale patterned ZnO nanowire arrays for enhanced solar water splitting. J Solid State Electrochem 20:3499–3505

    Article  Google Scholar 

  18. Shao M, Ning F, Wei M, Evans DG, Duan X (2014) Hierarchical nanowire arrays based on ZnO core–layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv Funct Mater 24:580–586

    Article  Google Scholar 

  19. Bu Y, Chen Z, Li W, Hou B (2013) Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material. ACS Appl Mater Interface 5:12361–12368

    Article  Google Scholar 

  20. Gurudayal Sabba D, Kumar MH, Wong LH, Barber J, Gratzel M, Mathews N (2015) Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett 15:3833–3839

    Article  Google Scholar 

  21. Prévot MS, Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117:17879–17893

    Article  Google Scholar 

  22. Brillet J, Yum J-H, Cornuz M, Hisatomi T, Solarska R, Augustynski J, Graetzel M, Sivula K (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Photonics 6:824–828

    Article  Google Scholar 

  23. Sun K, Madsen K, Andersen P, Bao W, Sun Z, Wang D (2012) Metal on metal oxide nanowire co-catalyzed Si photocathode for solar water splitting. Nanotechnology 23:194013

    Article  Google Scholar 

  24. Kargar A, Sun K, Jing Y, Choi C, Jeong H, Jung GY, Jin S, Wang D (2013) 3D branched nanowire photoelectrochemical electrodes for efficient solar water splitting. ACS Nano 7:9407–9415

    Article  Google Scholar 

  25. Kargar A, Sun K, Jing Y, Choi C, Jeong H, Zhou Y, Madsen K, Naughton P, Jin S, Jung GY, Wang D (2013) Tailoring n-ZnO/p-Si branched nanowire heterostructures for selective photoelectrochemical water oxidation or reduction. Nano Lett 13:3017–3022

    Article  Google Scholar 

  26. Dee CF, Chong SK, Rahman SA, Omar FS, Huang NM, Majlis BY, Salleh MM (2014) Hierarchical Si/ZnO trunk-branch nanostructure for photocurrent enhancement. Nanoscale Res Lett 9:469

    Article  Google Scholar 

  27. Wang Y, Wang F, He J (2013) Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 5:11291–11297

    Article  Google Scholar 

  28. Yang N, Zhai J, Wang D, Chen Y, Jiang L (2010) Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4:887–894

    Article  Google Scholar 

  29. Kang Z, Gu Y, Yan X, Bai Z, Liu Y, Liu S, Zhang X, Zhang Z, Zhang X, Zhang Y (2015) Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens Bioelectron 64:499–504

    Article  Google Scholar 

  30. Guo CX, Dong Y, Yang HB, Li CM (2013) Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv Energy Mater 3:997–1003

    Article  Google Scholar 

  31. Kenanakis G, Vernardou D, Koudoumas E, Katsarakis N (2009) Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires’ diameter. J Cryst Growth 311:4799–4804

    Article  Google Scholar 

  32. Bao Z, Xu X, Zhou G, Hu J (2016) Constructing n-ZnO@Au heterogeneous nanorod arrays on p-Si substrate as efficient photocathode for water splitting. Nanotechnology 27:305403

    Article  Google Scholar 

  33. Weng B, Yang M-Q, Zhang N, Xu Y-J (2014) Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J Mater Chem A 2:9380

    Article  Google Scholar 

  34. Bai Z, Yan X, Kang Z, Hu Y, Zhang X, Zhang Y (2015) Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy 14:392–400

    Article  Google Scholar 

  35. Kochuveedu ST, Jang YH, Jang YJ, Kim DH (2013) Visible light active photocatalysis on block copolymer induced strings of ZnO nanoparticles doped with carbon. J Mater Chem A 1:898–905

    Article  Google Scholar 

  36. Foo CY, Sumboja A, Tan DJH, Wang J, Lee PS (2014) Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv Energy Mater 4:1400236

    Article  Google Scholar 

  37. Meier U, Pettenkofer C (2005) Morphology of the Si–ZnO interface. Appl Surf Sci 252:1139–1146

    Article  Google Scholar 

  38. Cincotto FH, Canevari TC, Campos AM, Landers R, Machado SA (2014) Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles. Analyst 139:4634–4640

    Article  Google Scholar 

  39. Ketteler G, Yamamoto S, Bluhm H, Andersson K, Starr DE, Ogletree DF, Ogasawara H, Nilsson A, Salmeron M (2007) The nature of water nucleation sites on TiO2 (110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J Phys Chem C 111:8278–8282

    Article  Google Scholar 

  40. Xiang HJ, Yang J, Hou JG, Zhu Q (2006) Piezoelectricity in ZnO nanowires: a first-principles study. Appl Phys Lett 89:223111

    Article  Google Scholar 

  41. Noh SY, Sun K, Choi C, Niu M, Yang M, Xu K, Jin S, Wang D (2013) Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting. Nano Energy 2:351–360

    Article  Google Scholar 

  42. Roy P, Periasamy AP, Liang CT, Chang HT (2013) Synthesis of graphene-ZnO–Au nanocomposites for efficient photocatalytic reduction of nitrobenzene. Environ Sci Technol 47:6688–6695

    Article  Google Scholar 

  43. Hwang YJ, Boukai A, Yang PD (2009) High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett 9:410–415

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC) (51602021), the China Postdoctoral Science Foundation (2015M580979) and the Fundamental Research Funds for the Central Universities (FRF-TP-15-107A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Liu, F., Liu, J. et al. Enhanced photoelectrochemical performance of n-Si/n-ZnO nanowire arrays using graphene interlayers. J Mater Sci 52, 10497–10505 (2017). https://doi.org/10.1007/s10853-017-1235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1235-y

Keywords

Navigation