Skip to main content
Log in

Radial deformation of single-walled carbon nanotubes on quartz substrates and the resultant anomalous diameter-dependent reaction selectivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owing to the unique conjugated structure, the chemical-reaction selectivity of single-walled carbon nanotubes (SWNTs) has attracted great attention. By utilizing the radial deformation of SWNTs caused by the strong interactions with the quartz lattice, we achieve an anomalous diameter-dependent reaction selectivity of quartz lattice-oriented SWNTs in treatment with iodine vapor; this is distinctly different from the widely reported and well accepted higher reaction activity in small-diameter tubes compared to large-diameter tubes. The radial deformation of SWNTs on quartz substrate is verified by detailed Raman spectroscopy and mappings in both G-band and radial breathing mode. Due to the strong interaction between SWNTs and the quartz lattice, large-diameter tubes present a larger degree of radial deformation and more delocalized partial electrons are distributed at certain sidewall sites with high local curvature. It is thus easier for the carbon–carbon bonds at these high-curvature sites on large-diameter tubes to break down during reaction. This anomalous reaction activity offers a novel approach for selective removal of small-bandgap large-diameter tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

    Article  Google Scholar 

  2. Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Carbon nanotube electronics-moving forward. Chem. Soc. Rev. 2013, 42, 2592–2609.

    Article  Google Scholar 

  3. Oh, J.; Chang, Y. W.; Kim, H. J.; Yoo, S.; Kim, D. J.; Im, S.; Park, Y. J.; Kim, D.; Yoo, K. H. Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements. Nano Lett. 2010, 10, 2755–2760.

    Article  Google Scholar 

  4. Wohlstadter, J. N.; Wilbur, J. L.; Sigal, G. B.; Biebuyck, H. A.; Billadeau, M. A.; Dong, L. W.; Fischer, A. B.; Gudibande, S. R.; Jamieson, S. H.; Kenten, J. H. et al. Carbon nanotube-based biosensor. Adv. Mater. 2003, 15, 1184–1187.

    Article  Google Scholar 

  5. An, K. H.; Park, J. S.; Yang, C. M.; Jeong, S. Y.; Lim, S. C.; Kang, C.; Son, J. H.; Jeong, M. S.; Lee, Y. H. A diameterselective attack of metallic carbon nanotubes by nitronium ions. J. Am. Chem. Soc. 2005, 127, 5196–5203.

    Article  Google Scholar 

  6. Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.

    Article  Google Scholar 

  7. Seo, K.; Park, K. A.; Kim, C.; Han, S.; Kim, B.; Lee, Y. H. Chirality- and diameter-dependent reactivity of NO2 on carbon nanotube walls. J. Am. Chem. Soc. 2005, 127, 15724–15729.

    Article  Google Scholar 

  8. Yang, C. M.; An, K. H.; Park, J. S.; Park, K. A.; Lim, S. C.; Cho, S. H.; Lee, Y. S.; Park, W.; Park, C. Y.; Lee, Y. H. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 2006, 73, 075419.

    Article  Google Scholar 

  9. Doyle, C. D.; Rocha, J. D. R.; Weisman, R. B.; Tour, J. M. Structure-dependent reactivity of semiconducting singlewalled carbon nanotubes with benzenediazonium salts. J. Am. Chem. Soc. 2008, 130, 6795–6800.

    Article  Google Scholar 

  10. Kalbáč, M.; Kavan, L.; Dunsch, L. Selective etching of thin single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 4529–4534.

    Article  Google Scholar 

  11. Yu, B.; Liu, C.; Hou, P. X.; Tian, Y.; Li, S.; Liu, B.; Li, F.; Kauppinen, E. I.; Cheng, H. M. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 2011, 133, 5232–5235.

    Article  Google Scholar 

  12. Zhang, K.; Zhang, Q.; Liu, C.; Marzari, N.; Stellacci, F. Diameter effect on the sidewall functionalization of singlewalled carbon nanotubes by addition of dichlorocarbene. Adv. Funct. Mater. 2012, 22, 5216–5223.

    Article  Google Scholar 

  13. Lebedkin, S.; Arnold, K.; Kiowski, O.; Hennrich, F.; Kappes, M. M. Raman study of individually dispersed single-walled carbon nanotubes under pressure. Phys Rev B 2006, 73, 094109.

    Article  Google Scholar 

  14. Ding, L.; Zhou, W. W.; Mc Nicholas, T. P.; Wang, J. Y.; Chu, H. B.; Li, Y.; Liu, J. Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res. 2009, 2, 903–910.

    Article  Google Scholar 

  15. Ozel, T.; Abdula, D.; Hwang, E.; Shim, M. Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz. ACS Nano 2009, 3, 2217–2224.

    Article  Google Scholar 

  16. Soares, J. S.; Barros, E. B.; Shadmi, N.; Joselevich, E.; Jorio, A. Raman study of nanotube-substrate interaction using single-wall carbon nanotubes grown on crystalline quartz. Phys. Status Solidi B 2011, 248, 2536–2539.

    Article  Google Scholar 

  17. Soares, J. S.; Barboza, A. P. M.; Araujo, P. T.; Barbosa, N. M.; Nakabayashi, D.; Shadmi, N.; Yarden, T.; Ismach, A.; Geblinger, N.; Joselevich, E. et al. Modulating the electronic properties along carbon nanotubes via tube-substrate interaction. Nano Lett. 2010, 10, 5043–5048.

    Article  Google Scholar 

  18. Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

    Article  Google Scholar 

  19. Li, Y.; Cui, R. L.; Ding, L.; Liu, Y.; Zhou, W. W.; Zhang, Y.; Jin, Z.; Peng, F.; Liu, J. How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv. Mater. 2010, 22, 1508–1515.

    Article  Google Scholar 

  20. Wang, C. J.; Cao, Q.; Ozel, T.; Gaur, A.; Rogers, J. A.; Shim, M. Electronically selective chemical functionalization of carbon nanotubes: Correlation between raman spectral and electrical responses. J. Am. Chem. Soc. 2005, 127, 11460–11468.

    Article  Google Scholar 

  21. Nguyen, K. T.; Shim, M. Role of covalent defects on phonon softening in metallic carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 7103–7106.

    Article  Google Scholar 

  22. Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from raman scattering. Nature 1997, 388, 257–259.

    Article  Google Scholar 

  23. Shim, M.; Ozel, T.; Gaur, A.; Wang, C. J. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption. J. Am. Chem. Soc. 2006, 128, 7522–7530.

    Article  Google Scholar 

  24. Tsang, J. C.; Freitag, M.; Perebeinos, V.; Liu, J.; Avouris, P. Doping and phonon renormalization in carbon nanotubes. Nat. Nanotechnol. 2007, 2, 725–730.

    Article  Google Scholar 

  25. Cronin, S. B.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance raman spectra of atomic-force-microscope modified singlewall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.

    Article  Google Scholar 

  26. Cronin, S. B.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Resonant raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 2005, 72, 035425.

    Article  Google Scholar 

  27. Jay, A. H. The thermal expansion of quartz by x-ray measurements. Proc. R. Soc. London, Ser. A 1933, 142, 237–247.

    Article  Google Scholar 

  28. Rosenholtz, J. L.; Smith, D. T. Linear thermal expansion and inversions of quartz, var. Rock crystal. Am. Mineral. 1941, 26, 103.

    Google Scholar 

  29. Jiang, H.; Liu, B.; Huang, Y.; Hwang, K. Thermal expansion of single wall carbon nanotubes. J. Eng. Mater. Technol. 2004, 126, 265–270.

    Article  Google Scholar 

  30. Duan, X. J.; Son, H. B.; Gao, B.; Zhang, J.; Wu, T. J.; Samsonidze, G. G.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Resonant raman spectroscopy of individual strained singlewall carbon nanotubes. Nano Lett. 2007, 7, 2116–2121.

    Article  Google Scholar 

  31. Gao, B.; Duan, X. J.; Zhang, J.; Wu, T. J.; Son, H. B.; Kong, J.; Liu, Z. F. Raman spectral probing of electronic transition energy e-ii variation of individual swnts under torsional strain. Nano Lett. 2007, 7, 750–753.

    Article  Google Scholar 

  32. Lee, S. W.; Jeong, G. H.; Campbell, E. E. B. In situ raman measurements of suspended individual single-walled carbon nanotubes under strain. Nano Lett. 2007, 7, 2590–2595.

    Article  Google Scholar 

  33. Yang, W.; Wang, R. Z.; Yan, H. Strain-induced raman-mode shift in single-wall carbon nanotubes: Calculation of force constants from molecular-dynamics simulations. Phys. Rev. B 2008, 77, 195440.

    Article  Google Scholar 

  34. Amer, M. S.; El-Ashry, M. M.; Maguire, J. F. Study of the hydrostatic pressure dependence of the raman spectrum of single-walled carbon nanotubes and nanospheres. J. Chem. Phys. 2004, 121, 2752–2757.

    Article  Google Scholar 

  35. Yang, W.; Wang, R. Z.; Song, X. M.; Wang, B.; Yan, H. Pressure-induced raman-active radial breathing mode transition in single-wall carbon nanotubes. Phys. Rev. B 2007, 75, 045425.

    Article  Google Scholar 

  36. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

    Article  Google Scholar 

  37. Guan, L. H.; Suenaga, K.; Shi, Z. J.; Gu, Z. N.; Iijima, S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett. 2007, 7, 1532–1535.

    Article  Google Scholar 

  38. Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous threedimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.

    Article  Google Scholar 

  39. Wang, J. Y.; Yang, J.; Zhang, D. Q.; Li, Y. Structure dependence of the intermediate-frequency raman modes in isolated single-walled carbon nanotubes. J. Phys. Chem. C 2012, 116, 23826–23832.

    Article  Google Scholar 

  40. Lara, I. V.; Zanella, I.; Fagan, S. B. Functionalization of carbon nanotube by carboxyl group under radial deformation. Chem. Phys. 2014, 428, 117–120.

    Article  Google Scholar 

  41. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  42. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using castep. Z Kristallogr 2005, 220, 567–570.

    Article  Google Scholar 

  43. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  44. Perdew, J. P. Accurate density functional for the energyreal- space cutoff of the gradient expansion for the exchange hole. Phys. Rev. Lett. 1985, 55, 1665–1668.

    Google Scholar 

  45. Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular-systems. J Chem. Phys. 1990, 92, 5397–5403.

    Article  Google Scholar 

  46. Silvi, B.; Savin, A. Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, Y., Zhang, D. et al. Radial deformation of single-walled carbon nanotubes on quartz substrates and the resultant anomalous diameter-dependent reaction selectivity. Nano Res. 8, 3054–3065 (2015). https://doi.org/10.1007/s12274-015-0811-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0811-1

Keywords

Navigation