Nano Research

, Volume 8, Issue 5, pp 1522–1534 | Cite as

Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser

  • Meng Zhang
  • Richard C. T. Howe
  • Robert I. Woodward
  • Edmund J. R. Kelleher
  • Felice Torrisi
  • Guohua Hu
  • Sergei V. Popov
  • J. Roy Taylor
  • Tawfique Hasan
Open Access
Research Article

Abstract

We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.

Keywords

molybdenum disulfide two-dimensional materials liquid phase exfoliation polymer composites saturable absorbers ultrafast lasers 

References

  1. [1]
    Liu, X.; Si, J.; Chang, B.; Xu, G.; Yang, Q.; Pan, Z.; Xie, S.; Ye, P.; Fan, J.; Wan, M. Third-order optical nonlinearity of the carbon nanotubes. Appl. Phys. Lett. 1999, 74, 164–166.CrossRefGoogle Scholar
  2. [2]
    Hendry, E.; Hale, P. J.; Moger, J.; Savchenko, A. K.; Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 2010, 105, 097401.CrossRefGoogle Scholar
  3. [3]
    Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y. J.; Lombardo, A.; Milana, S.; Nair, R. R.; Novoselov, K. S.; Ferrari, A. C.; Cerullo, G.; et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 2013, 4, 1987.CrossRefGoogle Scholar
  4. [4]
    Tomadin, A.; Brida, D.; Cerullo, G.; Ferrari, A. C.; Polini, M. Nonequilibrium dynamics of photoexcited electrons in graphene: collinear scattering, auger processes, and the impact of screening. Phys. Rev. B 2013, 88, 035430.CrossRefGoogle Scholar
  5. [5]
    Hasan, T.; Sun, Z.; Wang, F.; Bonaccorso, F.; Tan, P. H.; Rozhin, A. G.; Ferrari, A. C. Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 2009, 21, 3874–3899.CrossRefGoogle Scholar
  6. [6]
    Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene A. ACS Nano 2010, 4, 803–810.CrossRefGoogle Scholar
  7. [7]
    Set, S. Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M.; Sakakibara, Y.; Rozhin, A.; Tokumoto, M.; Kataura, H.; Achiba, Y.; Kikuchi, K. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In OSA Trends in Optics and Photonics (TOPS), Optical Fiber Communication Conference; Washington, D.C., 2003; p. 44.Google Scholar
  8. [8]
    Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.CrossRefGoogle Scholar
  9. [9]
    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 2009, 17, 17630–17635.CrossRefGoogle Scholar
  10. [10]
    Dean, J. J.; van Driel, H. M. Second harmonic generation from graphene and graphitic films. Appl. Phys. Lett. 2009, 95, 261910.CrossRefGoogle Scholar
  11. [11]
    De Dominicis, L.; Botti, S.; Asilyan, L. S.; Ciardi, R.; Fantoni, R.; Terranova, M. L.; Fiori, A.; Orlanducci, S.; Appolloni, R. Second- and third-harmonic generation in single-walled carbon nanotubes at nanosecond time scale. Appl. Phys. Lett. 2004, 85, 1418–1420.CrossRefGoogle Scholar
  12. [12]
    Chow, K. K.; Yamashita, S. Four-wave mixing in a single-walled carbon-nanotube-deposited d-shaped fiber and its application in tunable wavelength conversion. Opt. Express 2009, 17, 15608–15613.CrossRefGoogle Scholar
  13. [13]
    Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.CrossRefGoogle Scholar
  14. [14]
    Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.CrossRefGoogle Scholar
  15. [15]
    He, K.; Zhang, Y.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y.; et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.CrossRefGoogle Scholar
  16. [16]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  17. [17]
    Bonaccorso, F.; Sun, Z. Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics. Opt. Mater. Express 2014, 4, 63–78.CrossRefGoogle Scholar
  18. [18]
    Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Production and processing of graphene and 2D crystals. Mater. Today 2012, 15, 564–589.CrossRefGoogle Scholar
  19. [19]
    Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.CrossRefGoogle Scholar
  20. [20]
    Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.CrossRefGoogle Scholar
  21. [21]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  22. [22]
    Wang, R.; Chien, H.-C.; Kumar, J.; Kumar, N.; Chiu, H.-Y.; Zhao, H. Third-harmonic generation in ultrathin films of MoS2. ACS Appl. Mater. Interfaces 2014, 6, 314–318.CrossRefGoogle Scholar
  23. [23]
    Wang, K.; Wang, J.; Fan, J.; Lotya, M.; O’Neill, A.; Fox, D.; Feng, Y.; Zhang, X.; Jiang, B.; Zhao, Q.; et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 2013, 7, 9260–9267.CrossRefGoogle Scholar
  24. [24]
    Wang, K.; Feng, Y.; Chang, C.; Zhan, J.; Wang, C.; Zhao, Q.; Coleman, J. N.; Zhang, L.; Blau, W.; Wang, J. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale 2014, 6, 10530–10535.CrossRefGoogle Scholar
  25. [25]
    Shi, H.; Yan, R.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072–1080.CrossRefGoogle Scholar
  26. [26]
    Wang, R.; Ruzicka, B. A.; Kumar, N.; Bellus, M. Z.; Chiu, H.-Y.; Zhao, H. Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys. Rev. B 2012, 86, 045406.CrossRefGoogle Scholar
  27. [27]
    Martinez, A.; Sun, Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics 2013, 7, 842–845.CrossRefGoogle Scholar
  28. [28]
    Wang, S.; Yu, H.; Zhang, H.; Wang, A.; Zhao, M.; Chen, Y.; Mei, L.; Wang, J. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26, 3538–3544.CrossRefGoogle Scholar
  29. [29]
    Torrisi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P. J.; et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992–3006.CrossRefGoogle Scholar
  30. [30]
    Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.CrossRefGoogle Scholar
  31. [31]
    Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O’Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G.; et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 2011, 23, 3944–3948.CrossRefGoogle Scholar
  32. [32]
    Joensen, P.; Frindt, R. F.; Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 1986, 21, 457–461.CrossRefGoogle Scholar
  33. [33]
    Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H.; et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.CrossRefGoogle Scholar
  34. [34]
    Lee, Y.-H.; Zhang, X.-Q.; Zhang, W.; Chang, M.-T.; Lin, C.-T.; Chang, K.-D.; Yu, Y.-C.; Wang, J. T.-W.; Chang, C.-S.; Li, L.-J.; et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.CrossRefGoogle Scholar
  35. [35]
    Lee, Y.-H.; Yu, L.; Wang, H.; Fang, W.; Ling, X.; Shi, Y.; Lin, C.-T.; Huang, J.-K.; Chang, M.-T.; Chang, C.-S.; et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852–1857.Google Scholar
  36. [36]
    Woodward, R. I.; Kelleher, E. J.; Runcorn, T. H.; Popov, S. V.; Torrisi, F.; Howe, R. T.; Hasan, T. Q-switched fiber laser with MoS2 saturable absorber. In CLEO: 2014; OSA: Washington, D.C., 2014; p. SM3H.6.CrossRefGoogle Scholar
  37. [37]
    Hasan, T.; Torrisi, F.; Sun, Z.; Popa, D.; Nicolosi, V.; Privitera, G.; Bonaccorso, F.; Ferrari, A. C. Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi 2010, 247, 2953–2957.CrossRefGoogle Scholar
  38. [38]
    Withers, F.; Yang, H.; Britnell, L.; Rooney, A.; Lewis, E.; Felten, A.; Woods, C.; Sanchez Romaguera, V.; Georgiou, T.; Eckmann, A.; et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 2014, 14, 3987–3992.CrossRefGoogle Scholar
  39. [39]
    Secor, E. B.; Prabhumirashi, P. L.; Puntambekar, K.; Geier, M. L.; Hersam, M. C. Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 2013, 4, 1347–1351.CrossRefGoogle Scholar
  40. [40]
    Zhang, H.; Lu, S. B.; Zheng, J.; Du, J.; Wen, S. C.; Tang, D. Y.; Loh, K. P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249–7260.CrossRefGoogle Scholar
  41. [41]
    Sun, Z.; Hasan, T.; Ferrari, A. C. Ultrafast lasers mode-locked by nanotubes and graphene. Phys. E Low-dimensional Syst. Nanostructures 2012, 44, 1082–1091.Google Scholar
  42. [42]
    Cunning, B. V.; Brown, C. L.; Kielpinski, D. Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration. Appl. Phys. Lett. 2011, 99, 261109.CrossRefGoogle Scholar
  43. [43]
    Sun, Z.; Popa, D.; Hasan, T.; Torrisi, F.; Wang, F.; Kelleher, E. J. R.; Travers, J. C.; Nicolosi, V.; Ferrari, A. C. A stable, wideband tunable, near transform-limited, graphene-mode-locked, Ultrafast Laser. Nano Res. 2010, 3, 653–660.CrossRefGoogle Scholar
  44. [44]
    Wang, F.; Rozhin, A. G.; Scardaci, V.; Sun, Z.; Hennrich, F.; White, I. H.; Milne, W. I.; Ferrari, A. C. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol. 2008, 3, 738–742.CrossRefGoogle Scholar
  45. [45]
    Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.CrossRefGoogle Scholar
  46. [46]
    Gordon, R.; Yang, D.; Crozier, E.; Jiang, D.; Frindt, R. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 2002, 65, 125407.CrossRefGoogle Scholar
  47. [47]
    Liu, H.; Luo, A.-P.; Wang, F.-Z.; Tang, R.; Liu, M.; Luo, Z.-C.; Xu, W.-C.; Zhao, C.-J.; Zhang, H. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber. Opt. Lett. 2014, 39, 4591–4594.CrossRefGoogle Scholar
  48. [48]
    Xia, H.; Li, H.; Lan, C.; Li, C.; Zhang, X.; Zhang, S.; Liu, Y. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express 2014, 22, 17341–17348.CrossRefGoogle Scholar
  49. [49]
    Woodward, R. I.; Kelleher, E. J. R.; Howe, R. C. T.; Hu, G.; Torrisi, F.; Hasan, T.; Popov, S. V.; Taylor, J. R. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express 2014, In Press. DOI: 10.1364/OE.22.031113.Google Scholar
  50. [50]
    Roxlo, C. B.; Chianelli, R. R.; Deckman, H. W.; Ruppert, A. F.; Wong, P. P. Bulk and surface optical absorption in molybdenum disulfide. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1987, 5, 555–557.CrossRefGoogle Scholar
  51. [51]
    Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene Mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.CrossRefGoogle Scholar
  52. [52]
    Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S. D.; Coleman, J. N. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 2010, 26, 3208–3213.CrossRefGoogle Scholar
  53. [53]
    Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N. Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between Compounds. ACS Nano 2012, 6, 3468–3480.CrossRefGoogle Scholar
  54. [54]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.CrossRefGoogle Scholar
  55. [55]
    Material safety data sheet for N-methyl-pyrrolidone. Sigma Aldrich.Google Scholar
  56. [56]
    Israelachvili, J. N. Intermolecular and Surface Forces; 3rd ed.; Academic Press: Boston, 2011.Google Scholar
  57. [57]
    Coleman, J. N. Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 2009, 19, 3680–3695.CrossRefGoogle Scholar
  58. [58]
    Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.CrossRefGoogle Scholar
  59. [59]
    Bonaccorso, F.; Zerbetto, M.; Ferrari, A. C.; Amendola, V. Sorting nanoparticles by centrifugal fields in clean media. J. Phys. Chem. C 2013, 117, 13217–13229.CrossRefGoogle Scholar
  60. [60]
    Beal, A.; Knights, J.; Liang, W. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: Trigonal prismatic coordination. J. Phys. C Solid State Phys. 1972, 5, 3540.CrossRefGoogle Scholar
  61. [61]
    Bromley, R.; Murray, R.; Yoffe, A. The band structures of some transition metal dichalcogenides. III. Group VIA: Trigonal prism materials. J. Phys. C Solid State Phys. 1972, 5, 759.CrossRefGoogle Scholar
  62. [62]
    Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.CrossRefGoogle Scholar
  63. [63]
    O’Neill, A.; Khan, U.; Coleman, J. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 2012, 24, 2414–2421.CrossRefGoogle Scholar
  64. [64]
    Material safety data sheet for cyclohexanone. Sigma Aldrich.Google Scholar
  65. [65]
    Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.CrossRefGoogle Scholar
  66. [66]
    Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.CrossRefGoogle Scholar
  67. [67]
    Zhang, X.; Han, W.; Wu, J.; Milana, S.; Lu, Y.; Li, Q.; Ferrari, A. C.; Tan, P. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 2013, 87, 115413.CrossRefGoogle Scholar
  68. [68]
    Liang, L.; Meunier, V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 2014, 6, 5394–5401.CrossRefGoogle Scholar
  69. [69]
    Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley, 1998.CrossRefGoogle Scholar
  70. [70]
    Sheik-Bahae, M.; Said, A. A.; Wei, T.H.; Hagan, D. J.; Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769.CrossRefGoogle Scholar
  71. [71]
    Garmire, E. Resonant optical nonlinearities in semiconductors. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1094–1110.CrossRefGoogle Scholar
  72. [72]
    Boyd, R. W. Nonlinear Optics; Academic Press, 2003.Google Scholar
  73. [73]
    Mollenauer, L.; Gordon, J.; Islam, M. Soliton propagation in long fibers with periodically compensated loss. IEEE J. Quantum Electron. 1986, 22, 157–173.CrossRefGoogle Scholar
  74. [74]
    Hasegawa, A.; Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 1973, 23, 142–144.CrossRefGoogle Scholar
  75. [75]
    Von der Linde, D. Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B 1986, 39, 201–217CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Meng Zhang
    • 1
  • Richard C. T. Howe
    • 2
  • Robert I. Woodward
    • 1
  • Edmund J. R. Kelleher
    • 1
  • Felice Torrisi
    • 2
  • Guohua Hu
    • 2
  • Sergei V. Popov
    • 1
  • J. Roy Taylor
    • 1
  • Tawfique Hasan
    • 2
  1. 1.Femtosecond Optics Group, Blackett LaboratoryImperial College LondonLondonUK
  2. 2.Cambridge Graphene CentreUniversity of CambridgeCambridgeUK

Personalised recommendations