Nano Research

, Volume 8, Issue 4, pp 1320–1326 | Cite as

Highly uniform carbon nanotube nanomesh network transistors

  • Sung-Jin Choi
  • Patrick Bennett
  • Dongil Lee
  • Jeffrey Bokor
Research Article

Abstract

A new type of single-walled carbon nanotube (SWNT) thin-film transistor (TFT) structure with a nanomesh network channel has been fabricated from a preseparated semiconducting nanotube solution and simultaneously achieved both high uniformity and a high on/off ratio for application in large-scale integrated circuits. The nanomesh structure is prepared on a high-density SWNT network channel and enables a high on/off ratio while maintaining the excellent uniformity of the electrical properties of the SWNT TFTs. These effects are attributed to the effective elimination of metallic paths across the source/drain electrodes by forming the nanomesh structure in the high-density SWNT network channel. Therefore, our approach can serve as a critical foundation for future nanotube-based thinfilm display electronics.

Keywords

carbon nanotube network thin-film transistor nanomesh solution process highly uniform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_623_MOESM1_ESM.pdf (2.1 mb)
Supplementary material, approximately 2.13 MB.

References

  1. [1]
    Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.CrossRefGoogle Scholar
  2. [2]
    Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.CrossRefGoogle Scholar
  3. [3]
    Zhou, Y.; Gaur, A.; Hur, S.-H.; Kocabas, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. p-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 2004, 4, 2031–2035.CrossRefGoogle Scholar
  4. [4]
    Kocabas, C.; Meitl, M. A.; Gaur, A.; Shim, M.; Rogers, J. A. Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation. Nano Lett. 2004, 4, 2421–2426.CrossRefGoogle Scholar
  5. [5]
    Hu, L.; Hecht, D. S.; Grüner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517.CrossRefGoogle Scholar
  6. [6]
    Kumar, S.; Murthy, J. Y.; Alam, M. A. Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 2005, 95, 066802.CrossRefGoogle Scholar
  7. [7]
    Cao, Q.; Han, S.-J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.CrossRefGoogle Scholar
  8. [8]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.CrossRefGoogle Scholar
  9. [9]
    Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 2003, 3, 1541–1544.CrossRefGoogle Scholar
  10. [10]
    Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D.; Gordon, R. G.; Lundstrom, M.; Dai, H. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett., 2004, 4, 447–450.CrossRefGoogle Scholar
  11. [11]
    Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Yenilmez, E.; Gordon, R. G.; Lundstrom, M.; Dai, H. Self-aligned ballistic molecular transistors and electrically parallel nanotube Arrays. Nano Lett. 2004, 4, 1319–1322.CrossRefGoogle Scholar
  12. [12]
    Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; Mcintyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246.CrossRefGoogle Scholar
  13. [13]
    Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320.CrossRefGoogle Scholar
  14. [14]
    Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453–456.CrossRefGoogle Scholar
  15. [15]
    Javey, A.; Wang, Q.; Ural, A.; Li, Y.; Dai, H. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.CrossRefGoogle Scholar
  16. [16]
    Chen, Z. H.; Appenzeller, J.; Lin, Y. M.; Sippel-Oakley, J.; Rinzler, A. G.; Tang, J. Y.; Wind, S. J.; Solomon, P. M.; Avouris, P. An Integrated logic circuit assembled on a single carbon nanotube. Science 2006, 311, 1735.CrossRefGoogle Scholar
  17. [17]
    Wang, C.; Zhang, J.; Zhou, C. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 2010, 4, 7123–7132.CrossRefGoogle Scholar
  18. [18]
    Tans, S.; Verschueren, A.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.CrossRefGoogle Scholar
  19. [19]
    Zhang, J.; Wang, C.; Zhou, C. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 2012, 6, 7412–7419.CrossRefGoogle Scholar
  20. [20]
    Cao, Q.; Kim, H.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Mediumscale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.CrossRefGoogle Scholar
  21. [21]
    Takahashi, T.; Takei, K.; Gillies, A. G.; Fearing, R. S.; Javey, A. Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett. 2011, 11, 5408–5413.CrossRefGoogle Scholar
  22. [22]
    Wang, C.; Chien, J. C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527–1533.CrossRefGoogle Scholar
  23. [23]
    Cao, Q.; Rogers, J. A. Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res. 2008, 1, 259–272.CrossRefGoogle Scholar
  24. [24]
    Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2008, 21, 29–53.CrossRefGoogle Scholar
  25. [25]
    Sangwan, V. K.; Ortiz, R. P.; Alaboson, J. M. P.; Emery, J. D.; Bedzyk, M. J.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 2012, 6, 7480–7488.CrossRefGoogle Scholar
  26. [26]
    Rouhi, N.; Jain, D.; Burke, P. J. High-performance semiconducting nanotube inks: Progress and prospects. ACS Nano 2011, 5, 8471–8487.CrossRefGoogle Scholar
  27. [27]
    Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Carbon nanotube electronics-moving forward. Chem. Soc. Rev. 2013, 42, 2592–2609.CrossRefGoogle Scholar
  28. [28]
    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.CrossRefGoogle Scholar
  29. [29]
    Green, A. A.; Hersam, M. C. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv. Mater. 2011, 23, 2185–2190.CrossRefGoogle Scholar
  30. [30]
    Choi, S.-J.; Wang, C.; Lo, C. C.; Bennett, P.; Javey, A.; Bokor, J. Comparative study of solution-processed carbon nanotube network transistors. Appl. Phys. Lett. 2012, 101, 112104.CrossRefGoogle Scholar
  31. [31]
    Choi, S.-J.; Bennett, P.; Takei, K.; Wang, C.; Lo, C. C.; Javey, A.; Bokor, J. Short-channel transistors constructed with solution-processed carbon nanotubes. ACS Nano 2013, 7, 798–803.CrossRefGoogle Scholar
  32. [32]
    Sarker, B. K.; Shekhar, S.; Khondaker, S. I. Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties. ACS Nano 2011, 5, 6297–6305.CrossRefGoogle Scholar
  33. [33]
    Lee, D.; Seol, M. L.; Moon, D. I.; Bennett, P.; Yoder, N.; Humes, J.; Bokor, J.; Choi, Y.-K.; Choi, S.-J. High-performance thin-film transistors produced from highly separated solution processed carbon nanotubes. Appl. Phys. Lett. 2014, 104, 143508.CrossRefGoogle Scholar
  34. [34]
    Wang, C.; Zhang, J; Ryu, K.; Badmaev, A.; Gomez, L.; Zhou, C. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.CrossRefGoogle Scholar
  35. [35]
    Rouhi, N.; Jain, D.; Zand, K.; Burke, P. J. Fundamental limits on the mobility of nanotube-based semiconducting inks. Adv. Mater. 2011, 23, 94–99.CrossRefGoogle Scholar
  36. [36]
    Pimparkar, N.; Cao, Q.; Rogers, J. A.; Alam, M. A. Theory and practice of “Striping” for improved ON/OFF ratio in carbon nanonet thin film transistors. Nano Res. 2009, 2, 167–175.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sung-Jin Choi
    • 1
  • Patrick Bennett
    • 2
    • 3
  • Dongil Lee
    • 4
  • Jeffrey Bokor
    • 2
    • 5
  1. 1.School of Electrical EngineeringKookmin UniversitySeoulSouth Korea
  2. 2.Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyUSA
  3. 3.Applied Science & TechnologyUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
  5. 5.Materials Sciences DivisionLawrence Berkeley National LaboratoriesLawrenceUSA

Personalised recommendations