Skip to main content
Log in

Three-dimensional hierarchical Pt-Cu superstructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) hierarchical Pt-Cu tetragonal, highly branched, and dendritic superstructures have been synthesized by a facile template-free hydrothermal approach, showing growth patterns along (111, 110), (111), and (100) planes, respectively. These structures have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma optical emission spectrometry (ICP-OES) and a detailed formation mechanism has been developed, which shows that the in situ formed I2 and the galvanic replacement reaction between Cu and Pt4+ may guide the formation of these superstructures. The comparative electrocatalytic properties have been investigated for methanol and ethanol oxidation. Due to their interconnected arms, sufficient absorption sites, and exposed surfaces, these superstructures exhibit enhanced electrocatalytic performance for electro-oxidation of methanol and ethanol when compared with commercial Pt/C and Pt black.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C.; Kang, Y. J; Huo, Z. Y.; Zhu, Z. W.; Huang, W. N.; Xin, H. L. L.; Snyder, J. D.; Li, Y. D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  2. Song, Y. J.; Yang, Y.; Medforth, C. J.; Pereira, E.; Singh, A. K.; Xu, H. F.; Jiang, Y. B.; Brinker, C. J.; Swol, F. V.; Shelnutt, J. A. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J. Am. Chem. Soc. 2004, 126, 635–645.

    Article  Google Scholar 

  3. Noorduin, W. L.; Grinthal, A.; Mahadevan, L.; Aizenberg, J. Rationally designed complex, hierarchical microarchitectures. Science 2013, 340, 832–836.

    Article  Google Scholar 

  4. Miszta, K.; Graaf, J. D.; Bertoni, G.; Dorfs, D.; Brescia, R.; Marras, S.; Ceseracciu, L.; Cingolani, R.; Roij, R. V.; Dijkstra, M. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 2011, 10, 872–876.

    Article  Google Scholar 

  5. Gao, H. L.; Xu, L.; Long, F.; Pan, Z.; Du, Y. X.; Lu, Y.; Ge, J.; Yu, S. H. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating. Angew. Chem. Int. Ed. 2014, 53, 4561–4566.

    Article  Google Scholar 

  6. Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.

    Article  Google Scholar 

  7. Nudelman, M.; Sommerdijk, N. A. J. M. Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed. 2012, 51, 6582–6596.

    Article  Google Scholar 

  8. Bharathi, S.; Nataraj, D.; Seetha, M.; Mangalaraj, D.; Ponpandian, N.; Masuda, Y.; Senthil, K.; Yong, K. Controlled growth of single-crystalline, nanostructured dendrites and snowflakes of α-Fe2O3: Influence of the surfactant on the morphology and investigation of morphology dependent magnetic properties. CrystEngComm. 2010, 12, 373–382.

    Article  Google Scholar 

  9. Xiong, W. W.; Athresh, E. U.; Ng, Y. T.; Ding, J. F.; Wu, T.; Zhang, Q. H. Growing crystalline chalcogenidoarsenates in surfactants: From zero-dimensional cluster to three-dimensional framework. J. Am. Chem. Soc. 2013, 135, 1256–1259.

    Article  Google Scholar 

  10. Shi, L. H.; Wang, A. Q.; Zhang, T.; Zhang, B.; Su, D. S.; Li, H. Q.; Song, Y. J. One-step synthesis of Au-Pd alloy nanodendrites and their catalytic activity. J. Phys. Chem. C 2013, 117, 12526–12536.

    Article  Google Scholar 

  11. Wang, J. P.; Thomas, D. F.; Chen, A. C. Direct growth of novel alloyed PtAu nanodendrites. Chem. Commun. 2008, 5010–5012.

    Google Scholar 

  12. Lee, Y. W.; Kim, B. Y.; Lee, K. H.; Song, W. J.; Cao, G. Z.; Park, K. W. Synthesis of monodispersed Pt-Ni alloy nanodendrites and their electrochemical properties. Int. J. Electrochem. Sci. 2013, 8, 2305–2312.

    Google Scholar 

  13. Lou, X. Y.; Yuan, C. L.; Archer, L. A. An unusual example of hyperbranched metal nanocrystals and their shape evolution. Chem. Mater. 2006, 18, 3921–3923.

    Article  Google Scholar 

  14. Mohanty, A.; Garg, N.; Jin, R. C. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem. Int. Ed. 2010, 49, 4962–4966.

    Article  Google Scholar 

  15. Lim, B. K.; Jiang, M. J.; Yu, T. Y.; Camargo, P. H. C.; Xia, Y. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.

    Article  Google Scholar 

  16. Teng, X. W.; Liang, X. Y.; Maksimuk, S.; Yang, H. Synthesis of porous platinum nanoparticles. Small 2006, 2, 249–253.

    Article  Google Scholar 

  17. Yin, J.; Wang, J. H.; Li, M. R.; Jin, C. Z.; Zhang, T. Iodine ions mediated formation of monomorphic single-crystalline platinum nanoflowers. Chem. Mater. 2012, 24, 2645–2654.

    Article  Google Scholar 

  18. Wang, F.; Li, C. H.; Sun, L. D.; Xu, C. H.; Wang, J. F.; Yu, J. C.; Yan, C. H. Porous single-crystalline palladium nanoparticles with high catalytic activities. Angew. Chem. Int. Ed. 2012, 51, 4872–4876.

    Article  Google Scholar 

  19. Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925–1929.

    Article  Google Scholar 

  20. Zhu, L. P.; Xiao, H. M.; Zhang, W. D.; Yang, Y.; Fu, S. Y. Synthesis and characterization of novel three-dimensional metallic Co dendritic superstructures by a simple hydrothermal reduction route. CrystalGrowthDes. 2008, 8, 1113–1118.

    Google Scholar 

  21. Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880–11883.

    Article  Google Scholar 

  22. Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

    Article  Google Scholar 

  23. Nosheen, F.; Zhang, Z. C.; Zhuang, J.; Wang, X. One-pot fabrication of single-crystalline octahedral Pt-Cu nanoframes and their enhanced electrocatalytic activity. Nanoscale 2013, 5, 3660–3663.

    Article  Google Scholar 

  24. Shao, M. H.; Shoemaker, K.; Peles, A.; Kaneko, K.; Protsailo, L. Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 9253–9255.

    Article  Google Scholar 

  25. Bing, Y.; Liu, H. H.; Zhang, L.; Ghosh, D.; Zhang, J. J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184–2202.

    Article  Google Scholar 

  26. Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen T.; Liu, W. Q; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. Nano Res. 2013, 6, 822–835.

    Article  Google Scholar 

  27. Zhang, Z. C.; Yang, Y.; Nosheen, F.; Wang, P. P.; Zhang, J. C.; Zhuang, J.; Wang, X. Fine tuning of the structure of Pt-Cu alloy nanocrystals by glycine-mediated sequential reduction kinetics. Small 2013, 9, 3063–3069.

    Article  Google Scholar 

  28. Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  29. Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, Y.; Liao, S. J. Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571–580.

    Google Scholar 

  30. Lim, B. K.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  Google Scholar 

  31. Fan, N.; Yang, Y.; Wang, W. F.; Zhang, L. J.; Chen, W.; Zou, C.; Huang, S. M. Selective etching induces selective growth and controlled formation of various platinum nanostructures by modifying seed surface free energy. ACS Nano 2012, 6, 4072–4082.

    Article  Google Scholar 

  32. Zhang, Z. C.; Nosheen, F.; Zhang, J. C.; Yang, Y.; Wang, P. P.; Zhuang, J.; Wang, X. Growth of concave polyhedral Pd nanocrystals with 32 facets through in situ facet-selective etching. ChemSusChem 2013, 6, 1893–1897.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosheen, F., Zhang, Z., Xiang, G. et al. Three-dimensional hierarchical Pt-Cu superstructures. Nano Res. 8, 832–838 (2015). https://doi.org/10.1007/s12274-014-0565-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0565-1

Keywords

Navigation