Skip to main content
Log in

PbS micro-nanostructures with controlled morphologies by a novel thermal decomposition approach

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A novel synthetic approach for the preparation of PbS micro-nanostructures with different morphologies has been reported. PbS micro-nanostructures with various morphologies such as stars, dendrites, hexapods, and cubes were synthesized by thermal decomposition of lead acetate and thiourea in ethylene glycol at 120 °C, in air, in the absence of any surfactant. The PbS micro-nanostructures were characterized using different analytical techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The effect of different synthetic parameters such as [Pb2+:S2−] ratio, decomposition temperature, time, and source of sulfur on the morphologies of PbS was investigated and the mechanism for the formation of micro-nanostructures with different morphologies has also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Apte SK, Garaje SN, Mane GP, Vinu A, Naik SD, Amalnerkar DP, Kale BB (2011) A facile template-free approach for the large-scale solid-phase synthesis of CdS nanostructures and their excellent photocatalytic performance. Small 7(7):957–964. doi:10.1002/smll.201002130

    Article  Google Scholar 

  • Bakshi MS, Thakur P, Sachar S, Kaur G, Banipal TS, Possmayer F, Petersen NO (2007) Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals. J Phys Chem C 111(49):18087–18098. doi:10.1021/jp075477c

    Article  Google Scholar 

  • Bashouti M, Lifshitz E (2008) PbS sub-micrometer structures with anisotropic shape: ribbons, wires, octapods, and hollowed cubes. Inorg Chem 47(2):678–682. doi:10.1021/ic700706a

    Article  Google Scholar 

  • Borhade AV, Uphade BK (2012) A comparative study on characterization and photocatalytic activities of PbS and Co doped PbS nanoparticles. Chalcogenide Lett 9(7):299–306

    Google Scholar 

  • Bu J, Nie C, Liang J, Sun L, Xie Z, Wu Q, Lin C (2011) Synthesis of single-crystal PbS nanorods via a simple hydrothermal process using PEO–PPO–PEO triblock copolymer as a structure-directing agent. Nanotechnology 22(12):125602/1–125602/7. doi:10.1088/0957-4484/22/12/125602

    Article  Google Scholar 

  • Buckner SW, Konold RL, Jelliss PA (2004) Luminescence quenching in PbS nanoparticles. Chem Phys Lett 394(4–6):400–404. doi:10.1016/j.cplett.2004.06.138

    Article  Google Scholar 

  • Devi PI, Sivabharathy M, Ramachandran K (2013) Enhancement of dielectric constant in PVDF polymer using dendrite-shaped PbS nanostructures. Optik 124(19):3872–3875. doi:10.1016/j.ijleo.2012.11.038

    Article  Google Scholar 

  • Ding B, Shi M, Chen F, Zhou R, Deng M, Wang M, Chen H (2009) Shape-controlled syntheses of PbS submicro-/nano-crystals via hydrothermal method. J Cryst Growth 311(6):1533–1538. doi:10.1016/j.jcrysgro.2009.01.086

    Article  Google Scholar 

  • Hansen JA, Mukhopadhyay R, Hansen JO, Gothelf KV (2006) Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles. J Am Chem Soc 128(12):3860–3861. doi:10.1021/ja0574116

    Article  Google Scholar 

  • Hou Y, Kondoh H, Ohta T (2009) PbS cubes with pyramidal pits: an example of etching growth. Cryst Growth Des 9(7):3119–3123. doi:10.1021/cg801013t

    Article  Google Scholar 

  • Hu K, Liu P, Ye S, Zhang S (2009) Ultrasensitive electrochemical detection of DNA based on PbS nanoparticle tags and nanoporous gold electrode. Biosens Bioelectron 24(10):3113–3119. doi:10.1016/j.bios.2009.04.001

    Article  Google Scholar 

  • Huang T, Zhao Q, Xiao J, Qi L (2010) Controllable self-assembly of PbS nanostars into ordered structures: close-packed arrays and patterned arrays. ACS Nano 4(8):4707–4716. doi:10.1021/nn101272y

    Article  Google Scholar 

  • Liu S, Xiong S, Bao K, Cao J, Qian Y (2009) Shape-controlled preparation of PbS with various dendritic hierarchical structures with the assistance of l-methionine. J Phys Chem C 113(30):13002–13007. doi:10.1021/jp8104437

    Article  Google Scholar 

  • Liu M, Leng M, Liu D, Chen F, Li C, Wang C (2014) Local supersaturation dictated branching and faceting of submicrometer PbS particles with cubic growth habit. Inorg Chem 53(21):11484–11491. doi:10.1021/ic501368y

    Article  Google Scholar 

  • Lovette MA, Browning AR, Griffin DW, Sizemore JP, Snyder RC, Doherty MF (2008) Crystal shape engineering. Ind Eng Chem Res 47(24):9812–9833. doi:10.1021/ie800900f

    Article  Google Scholar 

  • Ma Y, Qi L, Ma J, Cheng H (2004) Hierarchical, star-shaped PbS crystals formed by a simple solution route. Cryst Growth Des 4(2):351–354. doi:10.1021/cg034174e

    Article  Google Scholar 

  • Malgras V, Nattestad A, Yamauchi Y, Dou SX, Kim JH (2015) The effect of surface passivation on the structure of sulphur-rich PbS colloidal quantum dots for photovoltaic application. Nanoscale 7(13):5706–5711. doi:10.1039/c4nr07006b

    Article  Google Scholar 

  • Mandal T, Piburn G, Stavila V, Rusakova I, Ould-Ely T, Colson AC, Whitmire KH (2011) New mixed ligand single-source precursors for PbS nanoparticles and their solvothermal decomposition to anisotropic nano- and microstructures. Chem Mater 23(18):4158–4169. doi:10.1021/cm201064c

    Article  Google Scholar 

  • McDonald SA, Konstantatos G, Zhang SG, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4(2):138–142. doi:10.1038/nmat1299

    Article  Google Scholar 

  • McPhail MR, Weiss EA (2014) Role of organosulfur compounds in the growth and final surface chemistry of PbS quantum dots. Chem Mater 26(11):3377–3384. doi:10.1021/cm4040819

    Article  Google Scholar 

  • Ni Y, Wang X, Hong J (2012) Fast reflux synthesis of multi-armed PbS dendrites, influencing factors and optical properties. RSC Adv 2(2):546–551. doi:10.1039/c1ra00769f

    Article  Google Scholar 

  • Peng Z, Jiang Y, Song Y, Wang C, Zhang H (2008) Morphology control of nanoscale PbS particles in a polyol process. Chem Mater 20(9):3153–3162. doi:10.1021/cm703707v

    Article  Google Scholar 

  • Phuruangrat A, Thongtem T, Thongtem S (2008) Characterization of PbS with different morphologies produced using a cyclic microwave radiation. Appl Surf Sci 254(23):7553–7558. doi:10.1016/j.apsusc.2008.01.059

    Article  Google Scholar 

  • Phuruangrat A, Thongtem T, Kuntalue B, Thongtem S (2012) Characterization of cubic and star-shaped dendritic PbS structures synthesized by a solvothermal method. Mater Lett 81:55–58. doi:10.1016/j.matlet.2012.04.129

    Article  Google Scholar 

  • Podsiadlo P, Lee B, Prakapenka VB, Krylova GV, Schaller RD, Demortiere A, Shevchenko EV (2011) High-pressure structural stability and elasticity of supercrystals self-assembled from nanocrystals. Nano Lett 11(2):579–588. doi:10.1021/nl103587u

    Article  Google Scholar 

  • Quan Z, Li C, Zhang X, Yang J, Yang P, Zhang C, Lin J (2008) Polyol-mediated synthesis of PbS crystals: shape evolution and growth mechanism. Cryst Growth Des 8(7):2384–2392. doi:10.1021/cg701236v

    Article  Google Scholar 

  • Querejeta-Fernandez A, Hernandez-Garrido JC, Yang H, Zhou Y, Varela A, Parras M, Kotov NA (2012) Unknown aspects of self-assembly of PbS microscale superstructures. ACS Nano 6(5):3800–3812. doi:10.1021/nn300890s

    Article  Google Scholar 

  • Saraidarov T, Reisfeld R, Sashchiuk A, Lifshitz E (2007) Synthesis and characterization of PbS nanorods and nanowires. Physica E 37(1–2):173–177. doi:10.1016/j.physe.2006.07.015

    Article  Google Scholar 

  • Shao S, Zhang G, Zhou H, Sun P, Yuan Z, Li B, Chen T (2007) Morphological evolution of PbS crystals under the control of l-lysine at different pH values: the ionization effect of the amino acid. Solid State Sci 9(8):725–731. doi:10.1016/j.solidstatesciences.2007.06.002

    Article  Google Scholar 

  • Silverstein RM, Webster FX, Kiemle DJ, Bryce DL (2015) In: Brennan D (ed) Spectrometric identification of organic compounds, 8th edn. Wiley, New York

  • Snyder RC, Doherty MF (2007) Faceted crystal shape evolution during dissolution or growth. AIChE J 53(5):1337–1348. doi:10.1002/aic.11132

    Article  Google Scholar 

  • Souici AH, Keghouche N, Delaire JA, Remita H, Etcheberry A, Mostafavi M (2009) Structural and optical properties of PbS nanoparticles synthesized by the radiolytic method. J Phys Chem C 113(19):8050–8057. doi:10.1021/jp811133b

    Article  Google Scholar 

  • Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  • Wang D, Yu DB, Shao MW, Liu XM, Yu WC, Qian YT (2003) Dendritic growth of PbS crystals with different morphologies. J Cryst Growth 257(3–4):384–389. doi:10.1016/s0022-0248(03)01470-2

    Article  Google Scholar 

  • Wang N, Cao X, Guo L, Yang S, Wu Z (2008) Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route. ACS Nano 2(2):184–190. doi:10.1021/nn7000855

    Article  Google Scholar 

  • Wang Y, Dai Q, Yang X, Zou B, Li D, Liu B, Zou G (2011) A facile approach to PbS nanoflowers and their shape-tunable single crystal hollow nanostructures: morphology evolution. CrystEngComm 13(1):199–203. doi:10.1039/c004459h

    Article  Google Scholar 

  • Wang Y, Yang X, Xiao G, Zhou B, Liu B, Zou G, Zou B (2013) Shape-controlled synthesis of PbS nanostructures from −20 to 240 °C: the competitive process between growth kinetics and thermodynamics. CrystEngComm 15(27):5496–5505. doi:10.1039/c3ce40337h

    Article  Google Scholar 

  • Wu W, He Y, Wu Y, Wu T (2011) Self-template synthesis of PbS nanodendrites and its photocatalytic performance. J Alloy Compd 509(38):9356–9362. doi:10.1016/j.jallcom.2011.07.036

    Article  Google Scholar 

  • Xiang J, Cao H, Wu Q, Zhang S, Zhang X (2008) l-Cysteine-assisted self-assembly of complex PbS structures. Cryst Growth Des 8(11):3935–3940. doi:10.1021/cg7007842

    Article  Google Scholar 

  • Yadav SK, Jeevanandam P (2015) Synthesis of PbS–Al2O3 nanocomposites by sol–gel process and studies on their optical properties. Opt Mater 46:209–215. doi:10.1016/j.optmat.2015.04.020

    Article  Google Scholar 

  • Zhang W, Yang Q, Xu L, Yu W, Qian Y (2005) Growth of PbS crystals from nanocubes to eight-horn-shaped dendrites through a complex synthetic route. Mater Lett 59(27):3383–3388. doi:10.1016/j.matlet.2004.09.065

    Article  Google Scholar 

  • Zhao N, Qi L (2006) Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Adv Mater 18(3):359–362. doi:10.1002/adma.200501756

    Article  Google Scholar 

  • Zhao XS, Xu SY, Liang LY, Li T, Cauchi S (2007) Luminescent stability of water-soluble PbS nanoparticles. J Mater Sci 42(12):4265–4269. doi:10.1007/s10853-006-0679-2

    Article  Google Scholar 

  • Zhou G, Lu M, Xiu Z, Wang S, Zhang H, Zhou Y, Wang S (2006) Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. J Phys Chem B 110(13):6543–6548. doi:10.1021/jp0549881

    Article  Google Scholar 

Download references

Acknowledgments

The award of Junior/Senior Research Fellowship (JRF/SRF) to Ms. Rama Gaur by the Council of Scientific and Industrial Research, Government of India, is gratefully acknowledged. Thanks are also due to the Institute Instrumentation Centre, IIT Roorkee, for providing some of the facilities used in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeevanandam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, R., Jeevanandam, P. PbS micro-nanostructures with controlled morphologies by a novel thermal decomposition approach. J Nanopart Res 18, 80 (2016). https://doi.org/10.1007/s11051-016-3382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3382-5

Keywords

Navigation