Skip to main content
Log in

Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Small Ag clusters confined in the channels of ordered mesoporous anatase TiO2 have been fabricated via a vacuum-assisted wet-impregnation method, utilizing well-ordered mesoporous anatase TiO2 with high thermal stability as the host. The composites have been characterized in detail by X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption fine structure (XAFS) spectroscopy, N2 adsorption, UV-visible diffuse reflectance spectroscopy and transmission electron microscopy. The results indicate that small Ag clusters are formed and uniformly confined in the channels of mesoporous TiO2 with an obvious confinement effect. The presence of strong Ag-O interactions involving the Ag clusters in intimate contact with the pore walls of mesoporous TiO2 is confirmed by XAFS analysis, and favors the separation of photogenerated electron-hole pairs, as shown by steady-state surface photovoltage spectroscopy and transient-state surface photovoltage measurements. The ordered mesoporous Ag/TiO2 composites exhibit excellent solar-light-driven photocatalytic performance for the degradation of phenol. This is attributed to the synergistic effects between the small Ag clusters acting as traps to effectively capture the photogenerated electrons, and the surface plasmon resonance of the Ag clusters promoting the absorption of visible light. This study clearly demonstrates the high-efficiency utilization of noble metals in the fabrication of high-performance solar-light-driven photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crossland, E. J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, J. A.; Snaith, H. J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013, 495, 215–219.

    Article  Google Scholar 

  2. Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.

    Article  Google Scholar 

  3. Zhou, W.; Sun, F. F.; Pan, K.; Tian, G. H.; Jiang, B. J.; Ren, Z. Y.; Tian, C. G.; Fu, H. G. Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: Preparation, characterization, and photocatalytic performance. Adv. Funct. Mater. 2011, 21, 1922–1930.

    Article  Google Scholar 

  4. Bai, H.; Li, X. S.; Hu, C.; Zhang, X.; Li, J. F.; Yan, Y.; Xi, G. C. Large-scale, three-dimensional, free-standing, and mesoporous metal oxide networks for high-performance photocatalysis. Sci. Rep. 2013, 3, 2204.

    Google Scholar 

  5. Lü, R. J.; Zhou, W.; Shi, K. Y.; Yang, Y.; Wang, L.; Pan, K.; Tian, C. Q.; Ren, Z. Y.; Fu, H. G. Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NOx gas sensors at room temperature. Nanoscale 2013, 5, 8569–8576.

    Article  Google Scholar 

  6. Deng, Y. H.; Wei, J.; Sun, Z. K.; Zhao, D. Y. Large-pore ordered mesoporous materials template from non-Pluronic amphiphilic block copolymers. Chem. Soc. Rev. 2013, 42, 4054–4070.

    Article  Google Scholar 

  7. Qiao, Z.; Brown, S. S.; Adcock, J.; Veith, G. M.; Bauer, J. C.; Payzant, E. A.; Unocic, R. R.; Dai, S. A topotactic synthetic methodology for highly fluorine-doped mesoporous metal oxides. Angew. Chem. Int. Ed. 2012, 51, 2888–2893.

    Article  Google Scholar 

  8. Joo, J. B.; Dahl, M.; Li, N.; Zaera, F.; Yin, Y. D. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy Environ. Sci. 2013, 6, 2082–2092.

    Article  Google Scholar 

  9. Chen, X. B.; Liu, L.; Liu, Z.; Marcus, M. A.; Wang, W.-C.; Oyler, N. A.; Grass, M. E.; Mao, B. H.; Glans, P. A.; Yu, P. Y., et al. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci. Rep. 2013, 3, 1510.

    Google Scholar 

  10. Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509–9549.

    Article  Google Scholar 

  11. Du, J.; Lai, X.; Yang, N.; Zhai, J.; Kisailus, D.; Su, F.; Wang, D.; Jiang, L. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano, 2011, 5, 590–596.

    Article  Google Scholar 

  12. Panayotov, D. A.; DeSario, P. A.; Pietron, J. J.; Brintlinger, T. H.; Szymczak, L. C.; Rolison, D. R.; Morris, J. R. Ultraviolet and visible photochemistry of methanol at 3D mesoporous networks: TiO2 and Au-TiO2. J. Phys. Chem. C 2013, 117, 15035–15049.

    Article  Google Scholar 

  13. Li, W.; Wu, Z. X.; Wang, J. X.; Elzatahry, A. A.; Zhao, D. Y. A perspective on mesoporous TiO2 materials. Chem. Mater. 2014, 26, 287–298.

    Article  Google Scholar 

  14. Joo, J. B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. D. Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv. Funct. Mater. 2012, 22, 166–174.

    Article  Google Scholar 

  15. Wei, W.; Yu, C.; Zhao, Q. F.; Li, G. S.; Wan, Y. Improvement of the visible-light photocatalytic performance of TiO2 by carbon mesostructures. Chem. Eur. J. 2013, 19, 566–577.

    Article  Google Scholar 

  16. Ismail, A. A.; Bahnemann, D. W. One-step synthesis of mesoporous platinum/titania nanocomposites as photocatalyst with enhanced photocatalytic activity for methanol oxidation. Green Chem. 2011, 13, 428–435.

    Article  Google Scholar 

  17. Kochuveedu, S. T.; Jang, Y. H.; Kim, D. H. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev. 2013, 42, 8467–8493.

    Article  Google Scholar 

  18. Wang, X. D.; Choi, J.; Mitchell, D. R. G.; Truong, Y. B.; Kyratzis, I. L.; Caruso, R. A. Enhanced photocatalytic activity: Macroporous electrospun mats of mesoporous Au/TiO2 nanofibers. ChemCatChem 2013, 5, 2646–2654.

    Article  Google Scholar 

  19. Wang, G. N.; Wang, X. F.; Liu, J. F.; Sun, X. M. Mesoporous Au/TiO2 nanocomposite microspheres for visible-light photocatalysis. Chem. Eur. J. 2012, 18, 5361–5366.

    Article  Google Scholar 

  20. Lu, J. W.; Zhang, P.; Li, A.; Su, F. L.; Wang, T.; Liu, Y.; Gong, J. L. Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light photocatalysis. Chem. Commun. 2013, 49, 5817–5819.

    Article  Google Scholar 

  21. Pineider, F.; Fernández, C. J.; Videtta, V.; Carlino, E.; Hourani, A.; Wilhelm, F.; Rogalev, A.; Cozzoli, P. D.; Ghigna, P.; Sangregorio, C. Spin-polarization transfer in colloidal magnetic-plasmonic Au/iron oxide hetero-nanocrystals. ACS Nano 2013, 7, 857–866.

    Article  Google Scholar 

  22. Bian, Z. F.; Zhu, J.; Cao, F. L.; Lu, Y. F.; Li, H. X. In situ encapsulation of Au nanoparticles in mesoporous core-shell TiO2 microspheres with enhanced activity and durability. Chem. Commun. 2009, 3789–3791.

    Google Scholar 

  23. Jiang, C. X.; Hara, K.; Fukuoka, A. Low-temperature oxidation of ethylene over platinum nanoparticles supported on mesoporous silica. Angew. Chem. Int. Ed. 2013, 52, 6265–6268.

    Article  Google Scholar 

  24. Li, T.; Zhou, W.; Wang, J. Q.; Qu, Y.; Tian, C. G.; Pan, K.; Tian, G. H.; Fu, H. G. Confinement effect on Ag clusters in the channels of well-ordered mesoporous TiO2 and their enhanced photocatalytic performance. ChemCatChem 2013, 5, 1354–1358.

    Article  Google Scholar 

  25. Wang, S.; Zhao, Q. F.; Wei, H. M.; Wang, J.-Q.; Cho, M.; Cho, H. S.; Terasaki, O.; Wan, Y. Aggregation-free gold nanoparticles in ordered mesoporous carbons: Toward highly active and stable heterogeneous catalysts. J. Am. Chem. Soc. 2013, 135, 11849–11860.

    Article  Google Scholar 

  26. Dutta, S.; Bhaumik, A. Continuous mesoporous titania nanocrystals: Their growth in confined space and scope for application. ChemSusChem 2013, 6, 2039–2041.

    Article  Google Scholar 

  27. Guin, D.; Manorama, S. V.; Latha, J. N. L.; Singh, S. Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: Synthesis, characterization, and tested for antibacterial outcome. J. Phys. Chem. C 2007, 111, 13393–13397.

    Article  Google Scholar 

  28. Yu, D.-H.; Yu, X. D.; Wang, C. H.; Liu, X.-C.; Xing, Y. Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties. ACS Appl. Mater. Interfaces 2012, 4, 2781–2787.

    Article  Google Scholar 

  29. Lee, J.-S.; Kim, S.-I.; Yoon, J.-C.; Jang, J.-H. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 2013, 7, 6047–6055.

    Article  Google Scholar 

  30. Liu, Y. R.; Jennings, J. R.; Zakeeruddin, S. M.; Grätzel, M.; Wang, Q. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: Insights gained from impedance spectroscopy. J. Am. Chem. Soc. 2013, 135, 3939–3952.

    Article  Google Scholar 

  31. Xia, X. H.; Zeng, J.; Zhang, Q.; Moran, C. H.; Xia, Y. N. Recent developments in shape-controlled synthesis of silver nanocrystals. J. Phys. Chem. C 2012, 116, 21647–21656.

    Article  Google Scholar 

  32. Choi, H.; Ko, S.-J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B. R.; Jung, J.-W.; Choi, H. J.; Cha, M.; Jeong, J. R., et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photon. 2013, 7, 732–738.

    Article  Google Scholar 

  33. Luan, Y.; Jing, L.; Xie, Y.; Sun, X.; Feng, Y.; Fu, H. Exceptional photocatalytic activity of 001-facet-exposed TiO2 mainly depending on enhanced adsorbed oxygen by residual hydrogen fluoride. ACS Catal. 2013, 3, 1378–1385.

    Article  Google Scholar 

  34. He, L. M.; Jing, L. Q.; Li, Z. J.; Sun, W. T.; Liu, C. Enhanced visible photocatalytic activity of nanocrystalline α-Fe2O3 by coupling phosphate-functionalized graphene. RSC Adv. 2013, 3, 7438–7444.

    Article  Google Scholar 

  35. Wei, X.; Xie, T. F.; Peng, L. L.; Fu, W.; Chen, J. S.; Gao, Q.; Hong G. Y.; Wang, D. J. Effect of heterojunction on the behavior of photogenerated charges in Fe3O4@Fe2O3 nanoparticle photocatalysts. J. Phys. Chem. C 2011, 115, 8637–8642.

    Article  Google Scholar 

  36. Huang, Q. W.; Tian, S. Q.; Zeng, D. W.; Wang, X. X.; Song, W. L.; Li, Y. Y.; Xiao, W.; Xie C. S. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond. ACS Catal. 2013, 3, 1477–1485.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggang Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Li, T., Wang, J. et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 7, 731–742 (2014). https://doi.org/10.1007/s12274-014-0434-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0434-y

Keywords

Navigation