Skip to main content
Log in

Strain-tunable electronic and transport properties of MoS2 nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Using density functional theory calculations, we have investigated the mechanical properties and strain effects on the electronic structure and transport properties of molybdenum disulfide (MoS2) nanotubes. At a similar diameter, an armchair nanotube has a higher Young’s modulus and Poisson ratio than its zigzag counterpart due to the different orientations of Mo-S bond topologies. An increase in axial tensile strain leads to a progressive decrease in the band gap for both armchair and zigzag nanotubes. For armchair nanotube, however, there is a semiconductor-to-metal transition at the tensile strain of about 8%. For both armchair and zigzag nanotubes, the effective mass of a hole is uniformly larger than its electron counterpart, and is more sensitive to strain. Based on deformation potential theory, we have calculated the carrier mobilities of MoS2 nanotubes. It is found that the hole mobility is higher than its electron counterpart for armchair (6, 6) nanotube while the electron mobility is higher than its hole counterpart for zigzag (10, 0) nanotube. Our results highlight the tunable electronic properties of MoS2 nanotubes, promising for interesting applications in nanodevices, such as opto-electronics, photoluminescence, electronic switch and nanoscale strain sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  Google Scholar 

  2. Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.

    Article  Google Scholar 

  3. Appenzeller, J. Carbon nanotubes for high-performance electronics-progress and prospect. Proceedings of the IEEE 2008, 96, 201–211.

    Article  Google Scholar 

  4. Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

    Article  Google Scholar 

  5. Yan, L. Y.; Li, W. F.; Fan, X. F.; Wei, L.; Chen, Y.; Kuo, J. L.; Li, L. J.; Kwak, S. K.; Mu, Y. G.; Chan-Park, M. B. Enrichment of (8,4) single-walled carbon nanotubes through coextraction with heparin. Small 2009, 6, 110–118.

    Article  Google Scholar 

  6. Yan, L. Y.; Li, W. F.; Mesgari, S.; Leong, S. S. J.; Chen, Y.; Loo, L. S.; Mu, Y. G.; Chan-Park, M. B. Use of a chondroitin sulfate isomer as an effective and removable dispersant of single-walled carbon nanotubes. Small 2011, 7, 2758–2768.

    Article  Google Scholar 

  7. Yuan, W.; Li, W. F.; Mu, Y. G.; Chan-Park, M. B. Effect of side-chain structure of rigid polyimide dispersant on mechanical properties of single-walled carbon nanotube/cyanate ester composite. ACS Appl. Mater. Interfaces 2011, 3, 1702–1712.

    Article  Google Scholar 

  8. Kis, A.; Mihailovic, D.; Remskar, M.; Mrzel, A.; Jesih, A.; Piwonski, I.; Kulik, A. J.; Benoît, W.; Forró, L. Shear and Young’s moduli of MoS2 nanotube ropes. Adv. Mater. 2003, 15, 733–736.

    Article  Google Scholar 

  9. Remskar, M.; Mrzel, A.; Virsek, M.; Godec, M.; Krause, M.; Kolitsch, A.; Singh, A.; Seabaugh, A. The MoS2 nanotubes with defect-controlled electric properties. Nanoscale Res. Lett 2011, 6, 26.

    Google Scholar 

  10. Remskar, M.; Mrzel, A.; Skraba, Z.; Jesih, A.; Ceh, M.; Demšar, J.; Stadelmann, P.; Lévy, F.; Mihailovic, D. Selfassembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 2001, 292, 479–481.

    Article  Google Scholar 

  11. Seifert, G.; Terrones, H.; Terrones, M.; Jungnickel, G.; Frauenheim, T. Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 2000, 85, 146–149.

    Article  Google Scholar 

  12. Xu, L. Electronic structure of MoS2 nanotubes. Ph.D. Dissertation, Clemson University, Clemson, SC, USA, 2007.

    Google Scholar 

  13. Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

    Article  Google Scholar 

  14. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  15. Johari, P.; Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 2012, 6, 5449–5456.

    Article  Google Scholar 

  16. Yue, Q.; Kang, J.; Shao, Z. Z.; Zhang, X. A.; Chang, S. L.; Wang, G.; Qin, S. Q.; Li, J. B. Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 2012, 376, 1166–1170.

    Article  Google Scholar 

  17. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    Article  Google Scholar 

  18. Heyd, R.; Charlier, A.; McRae, E. Uniaxial-stress effects on the electronic properties of carbon nanotubes. Phys. Rev. B 1997, 55, 6820.

    Article  Google Scholar 

  19. Minot, E.; Yaish, Y.; Sazonova, V.; Park, J. Y.; Brink, M.; McEuen, P. L. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 2003, 90, 156401.

    Article  Google Scholar 

  20. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  21. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  22. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  23. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  Google Scholar 

  24. Li, W. F.; Zhao, M. W.; Zhao, X.; Xia, Y. Y.; Mu, Y. G. Hydrogen saturation stabilizes vacancy-induced ferromagnetic ordering in graphene. Phys. Chem. Chem. Phys. 2010, 12, 13699–13706.

    Article  Google Scholar 

  25. Lorenz, T.; Teich, D.; Joswig, J. O.; Seifert, G. Theoretical study of the eechanical behavior of endividual TiS2 and MoS2 nanotubes. J. Phys. Chem. C 2012, 116, 11714–11721.

    Article  Google Scholar 

  26. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

    Article  Google Scholar 

  27. Bardeen, J.; Shockley, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 1950, 80, 72–80.

    Article  Google Scholar 

  28. Beleznay, F.; Bogár, F.; Ladik, J. Charge carrier mobility in quasi-one-dimensional systems: Application to a guanine stack. J. Chem. Phys. 2003, 119, 5690.

    Article  Google Scholar 

  29. Long, M. Q.; Tang, L.; Wang, D.; Wang, L. J.; Shuai, Z. G. Theoretical predictions of size-dependent carrier mobility and polarity in graphene. J. Am. Chem. Soc. 2009, 131, 17728–17729.

    Article  Google Scholar 

  30. Wang, J. Y.; Zhao, R. Q.; Yang, M. M.; Liu, Z. F.; Liu, Z. R. Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 2013, 138, 084701.

    Article  Google Scholar 

  31. Long, M. Q.; Tang, L.; Wang, D.; Li, Y. G.; Shuai, Z. G. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593–2600.

    Article  Google Scholar 

  32. Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.

    Article  Google Scholar 

  33. Overney, G.; Zhong, W.; Tomanek, D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Z. Phys. D 1993, 27, 93–96.

    Article  Google Scholar 

  34. Yakobson, B. I.; Brabec, C.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511–2514.

    Article  Google Scholar 

  35. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.

    Article  Google Scholar 

  36. Ding, Y.; Wang, Y. L.; Ni, J.; Shi, L.; Shi, S. Q.; Tang, W. H. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers. Phys. B: Condens. Matter 2011, 406, 2254–2260.

    Article  Google Scholar 

  37. Voß, D.; Krüger, P.; Mazur, A.; Pollmann, J. Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems. Phys. Rev. B 1999, 60, 14311–14317.

    Article  Google Scholar 

  38. Albe, K.; Klein, A. Density-functional-theory calculations of electronic band structure of single-crystal and singlelayer WS2. Phys. Rev. B 2002, 66, 073413.

    Article  Google Scholar 

  39. Han, S. W.; Kwon, H.; Kim, S. K.; Ryu, S.; Yun, W. S.; Kim, D. H.; Hwang, J. H.; Kang, J. S.; Baik, J.; Shin, H. J.; Hong, S. C. Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 2011, 84, 045409.

    Article  Google Scholar 

  40. Zibouche, N.; Kuc, A.; Heine, T. From layers to nanotubes: Transition metal disulfides TMS2. Eur. Phys. J. B 2012, 85, 1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, G., Guo, M. et al. Strain-tunable electronic and transport properties of MoS2 nanotubes. Nano Res. 7, 518–527 (2014). https://doi.org/10.1007/s12274-014-0418-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0418-y

Keywords

Navigation