Nano Research

, Volume 6, Issue 5, pp 335–347 | Cite as

Growth and low-energy electron microscopy characterization of monolayer hexagonal boron nitride on epitaxial cobalt

  • Carlo M. Orofeo
  • Satoru Suzuki
  • Hiroyuki Kageshima
  • Hiroki Hibino
Research Article

Abstract

Low-energy electron microscopy (LEEM) has been used to study the structure, initial growth orientation, growth progression, and the number of layers of atomically thin hexagonal boron nitride (h-BN) films. The h-BN films are grown on heteroepitaxial Co using chemical vapor deposition (CVD) at low pressure. Our findings from LEEM studies include the growth of monolayer film having two, oppositely oriented, triangular BN domains commensurate with the Co lattice. The growth of h-BN appears to be self-limiting at a monolayer, with thicker domains only appearing in patches, presumably initiated between domain boundaries. Reflectivity measurements of the thicker h-BN films show oscillations resulting from the resonant electron transmission through quantized electronic states of the h-BN films, with the number of minima scaling up with the number of h-BN layers. First principles density functional theory (DFT) calculations show that the positions of oscillations are related to the electronic band structure of h-BN.

Keywords

chemical vapor deposition cobalt domain boundaries hexagonal boron nitride low-energy electron microscopy (LEEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_310_MOESM1_ESM.pdf (579 kb)
Supplementary material, approximately 578 KB.

References

  1. [1]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451–10453.CrossRefGoogle Scholar
  2. [2]
    Neto, A. H. C.; Novoselov, K. New directions in science and technology: Two-dimensional crystals. Rep. Prog. Phys. 2011, 74, 082501.CrossRefGoogle Scholar
  3. [3]
    Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 2012, 6, 8583–8590.CrossRefGoogle Scholar
  4. [4]
    Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.CrossRefGoogle Scholar
  5. [5]
    Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.CrossRefGoogle Scholar
  6. [6]
    Watanabe, K.; Taniguchi, T.; Niiyama, T.; Miya, K.; Taniguchi, M. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics 2009, 3, 591–594.CrossRefGoogle Scholar
  7. [7]
    Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Kelly, P. J.; van den Brink, J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 2007, 76, 073103.CrossRefGoogle Scholar
  8. [8]
    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.CrossRefGoogle Scholar
  9. [9]
    Lee, K. H.; Shin, H. J.; Lee, J.; Lee, I. Y.; Kim, G. H.; Choi, J. Y.; Kim, S. W. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2012, 12, 714–718.CrossRefGoogle Scholar
  10. [10]
    Ramasubramaniam, A.; Naveh, D.; Towe, E. Tunable band gaps in bilayer graphene-BN heterostructures. Nano Lett. 2011, 11, 1070–1075.CrossRefGoogle Scholar
  11. [11]
    Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.CrossRefGoogle Scholar
  12. [12]
    Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B 1995, 51, 4606–4613.CrossRefGoogle Scholar
  13. [13]
    Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces. Phys. Rev. Lett. 1995, 75, 3918–3921.CrossRefGoogle Scholar
  14. [14]
    Auwärter, W.; Kreutz, T. J.; Greber, T.; Osterwalder, J. XPD and STM investigation of hexagonal boron nitride on Ni(111). Surf. Sci. 1999, 429, 229–236.CrossRefGoogle Scholar
  15. [15]
    Auwärter, W.; Suter, H. U.; Sachdev, H.; Greber, T. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 2004, 16, 343–345.CrossRefGoogle Scholar
  16. [16]
    Auwärter, W.; Muntwiler, M.; Osterwalder, J.; Greber, T. Defect lines and two-domain structure of hexagonal boron nitride films on Ni(111). Surf. Sci. 2003, 545, L735–L740.CrossRefGoogle Scholar
  17. [17]
    Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.CrossRefGoogle Scholar
  18. [18]
    Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.CrossRefGoogle Scholar
  19. [19]
    Ismach, A.; Chou, H.; Ferrer, D. A.; Wu, Y. P.; McDonnell, S.; Floresca, H. C.; Covacevich, A.; Pope, C.; Piner, R.; Kim, M. J. et al. Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano 2012, 6, 6378–6385.CrossRefGoogle Scholar
  20. [20]
    Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.CrossRefGoogle Scholar
  21. [21]
    Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B. S.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.; Mizuno, S. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 2010, 4, 7407–7414.CrossRefGoogle Scholar
  22. [22]
    Orofeo, C. M.; Ago, H.; Hu, B. S.; Tsuji, M. Synthesis of large area, homogenous, single layer graphene films by annealing amorphous carbon on Co and Ni. Nano Res. 2011, 4, 531–540.CrossRefGoogle Scholar
  23. [23]
    Ogawa, Y.; Hu, B. S.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.; Mizuno, S.; Hibino, H.; Ago, H. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films. J. Phys. Chem. Lett. 2012, 3, 219–226.CrossRefGoogle Scholar
  24. [24]
    Young, D. A. Phase Diagrams of the Elements; University of California Press: Berkeley, 1991.Google Scholar
  25. [25]
    Suzuki, S.; Hibino, H. Chemical vapor deposition of hexagonal boron nitride. e-J. Surf. Sci. Nanotech. 2012, 10, 133–138.CrossRefGoogle Scholar
  26. [26]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  27. [27]
    Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.CrossRefGoogle Scholar
  28. [28]
    Reich, S.; Ferrari, A. C.; Arenal, R.; Loiseau, A.; Bello, I.; Robertson, J. Resonant Raman scattering in cubic and hexagonal boron nitride. Phys. Rev. B 2005, 71, 205201.CrossRefGoogle Scholar
  29. [29]
    Wang, Y. Y.; Ni, Z. H.; Yu, T.; Shen, Z. X.; Wang, H. M.; Wu, Y. H.; Chen, W.; Wee, A. T. S. Raman studies of monolayer graphene: The substrate effect. J. Phys. Chem. C 2008, 112, 10637–10640.CrossRefGoogle Scholar
  30. [30]
    Blase, X.; Rubio, A.; Louie, S. G.; Cohen, M. L. Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys. Rev. B 1995, 51, 6868–6875.CrossRefGoogle Scholar
  31. [31]
    Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.CrossRefGoogle Scholar
  32. [32]
    Hibino, H.; Kageshima, H.; Maeda, F.; Nagase, M.; Kobayashi, Y.; Yamaguchi, H. Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B 2008, 77, 075413.CrossRefGoogle Scholar
  33. [33]
    Hibino, H.; Kageshima, H.; Nagase, M. Epitaxial few-layer graphene: Towards single crystal growth. J. Phys. D: Appl. Phys. 2010, 43, 374005.CrossRefGoogle Scholar
  34. [34]
    Strocov, V. N.; Blaha, P.; Starnberg, H. I.; Rohlfing, M.; Claessen, R.; Debever, J. M.; Themlin, J. M. Three-dimensional unoccupied band structure of graphite: Very-low-energy electron diffraction and band calculations. Phys. Rev. B 2000, 61, 4994–5001.CrossRefGoogle Scholar
  35. [35]
    Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.CrossRefGoogle Scholar
  36. [36]
    Suzuki, S.; Pallares, R. M.; Hibino, H. Growth of atomically thin hexagonal boron nitride films by diffusion through a metal film and precipitation. J. Phys. D: Appl. Phys. 2012, 45, 385304.CrossRefGoogle Scholar
  37. [37]
    Ago, H.; Ogawa, Y.; Tsuji, M.; Mizuno, S.; Hibino, H. Catalytic growth of graphene: Toward large-area single-crystalline graphene. J. Phys. Chem. Lett. 2012, 3, 2228–2236.CrossRefGoogle Scholar
  38. [38]
    Sutter, P.; Lahiri, J.; Albrecht, P.; Sutter, E. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano 2011, 5, 7303–7309.CrossRefGoogle Scholar
  39. [39]
    Grad, G. B.; Blaha, P.; Schwarz, K.; Auwärter, W.; Greber, T. Density functional theory investigation of the geometric and spintronic structure of h-BN/Ni(111) in view of photoemission and STM experiments. Phys. Rev. B 2003, 68, 085404.CrossRefGoogle Scholar
  40. [40]
    Liu, Y. Y.; Bhowmick, S.; Yakobson, B. I. BN white graphene with “colorful” edges: The energies and morphology. Nano Lett. 2011, 11, 3113–3116.CrossRefGoogle Scholar
  41. [41]
    Frueh, S.; Kellett, R.; Mallery, C.; Molter, T.; Willis, W. S.; King’ondu, C.; Suib, S. L. Pyrolytic decomposition of ammonia borane to boron nitride. Inorg. Chem. 2011, 50, 783–792.CrossRefGoogle Scholar
  42. [42]
    Kageshima, H.; Shiraishi, K. Momentum-matrix-element calculation using pseudopotentials. Phys. Rev. B 1997, 56, 14985–14992.CrossRefGoogle Scholar
  43. [43]
    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.CrossRefGoogle Scholar
  44. [44]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  45. [45]
    Kurdyumov, A. V.; Solozhenko, V. L.; Zelyavski, W. B. Lattice parameters of boron nitride polymorphous modifications as a function of their crystal-structure perfection. J. Appl. Cryst. 1995, 28, 540–545.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carlo M. Orofeo
    • 1
  • Satoru Suzuki
    • 1
  • Hiroyuki Kageshima
    • 1
  • Hiroki Hibino
    • 1
  1. 1.NTT Basic Research LaboratoriesNTT CorporationAtsugi, KanagawaJapan

Personalised recommendations