Skip to main content
Log in

Polyol synthesis and chemical conversion of Cu2O nanospheres

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polyol synthesis route, which is a popular and effective way of synthesizing noble metal nanocrystals, has been employed for the fabrication of Cu2O nanospheres. With this method, the particle size of the product can be readily tailored by tuning the concentration of Cu(NO3)2 and/or poly(vinyl pyrrolidone). It has been demonstrated that the main driving force of this reaction is the difference in redox potentials between ethylene glycol (EG) and NO 3 , and not that between those of EG and Cu2+. The resulting Cu2O nanospheres were used as a solid precursor for generating hollow nanospheres of copper sulfide with different sulfiding degrees, as well as CuO, via suitable chemical conversions. The Kirkendall effect determined the final hollow structure. The results in this paper provide a good example of the broadening of the scope of application of polyol synthesis route and may supply a thinking clue for the synthesis of other oxide materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C.; Nan, C. Y.; Wang, D. S.; Su, Q.; Duan, H. H.; Liu, X. W.; Zhang, L. S. Q.; Chu, D. R.; Song, W. G.; Peng, Q.; Li, Y. D. Mesoporous multicomponent nanocomposite colloidal spheres: Ideal high-temperature stable model catalysts. Angew. Chem. Int. Ed. 2011, 50, 3725–3729.

    Article  CAS  Google Scholar 

  2. Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin Y. D. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed. 2008, 47, 8924–8928.

    Article  CAS  Google Scholar 

  3. Zhang, J. T.; Liu, J. F.; Peng, Q.; Wang, X.; Li, Y. D. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 2006, 18, 867–871.

    Article  CAS  Google Scholar 

  4. Hu, X. L.; Gong, J. M.; Zhang, L. Z.; Yu, J. C. Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing. Adv. Mater. 2008, 20, 4845–4850.

    Article  CAS  Google Scholar 

  5. Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.

    Article  CAS  Google Scholar 

  6. Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, C.; Meseguer, F.; Miguez, H.; Mondia, J. P. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 2000, 405, 437–440.

    Article  CAS  Google Scholar 

  7. Norris, D. J.; Vlasov, Y. A. Chemical approaches to three-dimensional semiconductor photonic crystals. Adv. Mater. 2001, 13, 371–376.

    Article  CAS  Google Scholar 

  8. Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12, 693–713.

    Article  CAS  Google Scholar 

  9. Pileni, M.-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2003, 2, 145–150.

    Article  CAS  Google Scholar 

  10. Sun, X.; Li, Y. D. Ga2O3 and GaN Semiconductor hollow spheres. Angew. Chem. Int. Ed. 2004, 43, 3827–3831.

    Article  CAS  Google Scholar 

  11. Johnson, S. A.; Ollivier, P. J.; Mallouk, T. E. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 1999, 283, 963–965.

    Article  CAS  Google Scholar 

  12. Peng, Q.; Xu, S.; Zhuang, Z. B.; Wang, X.; Li, Y. D. A general chemical conversion method to various semiconductor hollow structures. Small 2005, 1, 216–221.

    Article  CAS  Google Scholar 

  13. Cao, H. L.; Qian, X. F.; Wang, C.; Ma, X. D.; Yin, J.; Zhu, Z. K. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J. Am. Chem. Soc. 2005, 127, 16024–16025.

    Article  CAS  Google Scholar 

  14. Gao, J. N.; Li, Q. S.; Zhao, H. B.; Li, L. S.; Liu, C. L.; Gong, Q. H.; Qi, L. M. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chem. Mater. 2008, 20, 6263–6269.

    Article  CAS  Google Scholar 

  15. Cao, H. L.; Qian, X. F.; Zai, J. T.; Yin, J.; Zhu, Z. K. Conversion of Cu2O nanocrystals into hollow Cu2−xSe nano-cages with the preservation of morphologies. Chem. Commun. 2006, 4548–4550.

  16. Pang, M.; Zeng, H. C. Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives. Langmuir 2010, 26, 5963–5970.

    Google Scholar 

  17. Xiong, S.; Zeng, H. C. Serial ionic exchange for the synthesis of multishelled copper sulfide hollow spheres. Angew. Chem. Int. Ed. 2012, 51, 949–952.

    Article  CAS  Google Scholar 

  18. Jiao, S. H.; Xu, L. F.; Jiang, K.; Xu, D. S. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating. Adv. Mater. 2006, 18, 1174–1177.

    Article  CAS  Google Scholar 

  19. Yuhas, B. D.; Yang, P.; Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 2009, 131, 3756–3761.

    Article  CAS  Google Scholar 

  20. Wang, W.-C.; Lyu, L.-M.; Huang, M. H. Investigation of the effects of polyhedral gold nanocrystal morphology and facets on the formation of Au-Cu2O core-shell heterostructures. Chem. Mater. 2011, 23, 2677–2684.

    Article  CAS  Google Scholar 

  21. White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.; Turro, N.; O’Brien, S. Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett. 2006, 6, 2095–2098.

    Article  CAS  Google Scholar 

  22. Leng, M.; Liu, M.; Zhang, Y.; Wang, Z.; Yu, C.; Yang, X.; Zhang, H.; Wang, C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: Synthesis and enhanced catalytic CO oxidation activity. J. Am. Chem. Soc. 2010, 132, 17084–17087.

    Article  CAS  Google Scholar 

  23. Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater. 2007, 17, 2766–2771.

    Article  CAS  Google Scholar 

  24. Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J. Am. Chem. Soc. 2010, 132, 6131–6144.

    Article  CAS  Google Scholar 

  25. Chang, Y.; Teo, J. J.; Zeng, H. C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 2005, 21, 1074–1079.

    Article  CAS  Google Scholar 

  26. Xu, H. L.; Wang, W. Z. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 2007, 46, 1489–1492.

    Article  CAS  Google Scholar 

  27. Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    Article  CAS  Google Scholar 

  28. Tao, A; Sinsermsuksakul, P; Yang, P. D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 2006, 45, 4597–4601.

    Article  CAS  Google Scholar 

  29. Tao, A. R.; Habas, S.; Yang. P. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

    Article  CAS  Google Scholar 

  30. Park, J.; Zheng, H. M.; Jun, Y.-W.; Alivisatos, A. P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 2009, 131, 13943–13945.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Li, L., Peng, Q. et al. Polyol synthesis and chemical conversion of Cu2O nanospheres. Nano Res. 5, 320–326 (2012). https://doi.org/10.1007/s12274-012-0212-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0212-7

Keywords

Navigation