Skip to main content
Log in

The oxidation characteristics of silicon nanowires grown with an au catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, we investigated the thermal oxidation of silicon nanowires (SiNWs) grown via the vapor-liquid-solid (VLS) method with an Au catalyst. We systematically analyzed the oxidation mechanism of the SiNWs in both the radial and axial directions and mapped the behavior of the Au atoms on the sidewall and at top of the wire as a function of oxidation time. After thermal oxidation at a temperature of 900 °C, two kinds of oxidation behavior in SiNWs were observed: one was conventional radial oxidation and the other was axial oxidation. In particular, the axial oxidation rate at the Si/Au interface increased dramatically compared with the radial oxidation rate, which can be explained by the reaction between the Si atoms precipitated from the Au tip and the O2 gas injected in the area surrounding the Au tip. Additionally, we observed that the oxidation rate in the axial direction was inversely proportional to the wire diameter, which is related to the SiO2 surrounding the Si wire. Moreover, the Au shape changed with respect to the wire diameter, suggesting that both the stress in the Au-Si alloy and the SiO2 shell thickness of the wire critically affect the growth of SiO2 on Au.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kao, D. B.; McVittie, J. P.; Nix, W. D.; Saraswat, K. C. Two-dimensional thermal oxidation of silicon. I. Experiments. IEEE Trans. Electron Devices 1987, 34, 1008–1017.

    Article  Google Scholar 

  2. Kao, D. B.; McVittie, J. P.; Nix, W. D.; Saraswat, K. C. Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides. IEEE Trans. Electron Devices 1988, 35, 25–37.

    Article  Google Scholar 

  3. Deal, B. E.; Grove, A. S. General relationship for the thermal oxidation of silicon. J. Appl. Phys. 1965, 36, 3770–3778.

    Article  CAS  Google Scholar 

  4. Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.

    Article  CAS  Google Scholar 

  5. Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

    Article  CAS  Google Scholar 

  6. Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  CAS  Google Scholar 

  7. Zhao, X. Y.; Wei, C. M.; Yang, L.; Chou, M. Y. Quantum confinement and electronic properties of silicon nanowires. Phys. Rev. Lett. 2004, 92, 236805.

    Article  Google Scholar 

  8. Kederzierski, J.; Bokor, J.; Kisielowski, C. Fabrication of planar silicon nanowires on silicon-on-insulator using stress limited oxidation. J. Vac. Sci. Technol. B 1997, 15, 2825–2828.

    Article  Google Scholar 

  9. Buttner, C. C.; Zacharias, M. Retarded oxidation of Si nanowires. Appl. Phys. Lett. 2006, 89, 263106.

    Article  Google Scholar 

  10. Yu, D. P.; Bai, Z. G.; Wang, J. J.; Zou, Y. H.; Qian, W.; Fu, J. S.; Zhang, H. Z.; Ding, Y.; Xiong, G. C.; You, L. P.; Xu, J.; Feng, S. Q. Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires. Phys. Rev. B 1999, 59, R2498–R2501.

    Article  CAS  Google Scholar 

  11. Shir, D.; Liu, B. Z.; Mohammad, A. M.; Lew, K. K.; Mohney, S. E. Oxidation of silicon nanowires. J. Vac. Sci. Technol. B 2006, 24, 1333–1336.

    Article  CAS  Google Scholar 

  12. Liu, B. Z.; Wang, Y. F.; Ho, T. T.; Lew, K. K.; Eichfeld, S. M.; Redwing, J. M.; Mayer, T. S.; Mohney, S. E. Oxidation of silicon nanowires for top-gated field effect transistors. J. Vac. Sci. Technol. A 2008, 26, 370–374.

    Article  CAS  Google Scholar 

  13. Buttner, C. C.; Zakharov, N. D.; Pippel, E.; Gosele, U.; Werner, P. Gold-enhanced oxidation of MBE-grown silicon nanowires. Semicond. Sci. Technol. 2008, 23, 075040.

    Article  Google Scholar 

  14. Xie, T.; Schmidt, V.; Pippel, E.; Senz, S.; Gosele, U. Gold-enhanced low-temperature oxidation of silicon nanowires. Small 2008, 4, 64–68.

    Article  CAS  Google Scholar 

  15. Sivakov, V. A.; Scholz, R.; Syrowatka, F.; Falk, F.; Gosele, U.; Christiansen, S. H. Silicon nanowire oxidation: The influence of sidewall structure and gold distribution. Nanotechnology 2009, 20, 405607.

    Article  CAS  Google Scholar 

  16. Lee, W. J.; Ma, J. W.; Bae, J. M.; Cho, M. H.; Ahn, J. P. Effects of hydrogen on Au migration and the growth kinetics of Si nanowires. CrystEngComm 2011, 13, 690–696.

    Article  CAS  Google Scholar 

  17. Hiraki, A. Low temperature reactions at Si/metal interfaces; What is going on at the interfaces? Surf. Sci. Rep. 1983, 3, 357–412.

    Article  CAS  Google Scholar 

  18. Zhu, T.; Li, J.; Yip, S.; Bartlett, R. J.; Trickey, S. B.; De Leeuw, N. H. Deformation and fracture of a SiO2 Nanorod. Mol. Simul. 2003, 29, 671–676.

    Article  CAS  Google Scholar 

  19. Griggs, D. T.; Blacic, J. D. Quartz: Anomalous weakness of synthetic crystals. Science 1965, 147, 292–295.

    Article  CAS  Google Scholar 

  20. Yang, Y. M.; Yang, L. W.; Chu, P. K. Polarized Raman scattering of Ge nanocrystals embedded in a-SiO2. Appl. Phys. Lett. 2007, 90, 081909.

    Article  Google Scholar 

  21. Jie, Y. X.; Huan, C. H. A.; Wee, A. T. S.; Shen, Z. X. Raman shift and broadening in stress-minimized Ge nanocrystals in silicon oxide matrix. Mater. Res. Soc. Symp. Proc. 1999, 581, 597–602.

    Article  Google Scholar 

  22. Liu, L. Z.; Wu, X. L.; Zhang, Z. Y.; Li, T. H.; Chu, P. K. Raman investigation of oxidation mechanism of silicon nanowires. Appl. Phys. Lett. 2009, 95, 093109.

    Article  Google Scholar 

  23. Toda, S.; Oishi, T.; Yoshioka, T.; Okuno, T. Optical properties of silicon nanowires fabricated by electroless silver deposition. Jpn. J. Appl. Phys. 2010, 49, 095002.

    Article  Google Scholar 

  24. Melinon, P.; Keghelian, P.; Prevel, B.; Prevel, B.; Dupuis, V.; Perez, A.; Champagnon, B.; Guyot, Y.; Pellarin, M.; Lerme, J.; Broyer, M.; Rousset, J. L.; Delichere, P. Structural, vibrational, and optical properties of silicon cluster assembled films. J. Chem. Phys. 1998, 108, 4607–4613.

    Article  CAS  Google Scholar 

  25. De Wolf, I. Stress measurements in Si microelectronics devices using Raman spectroscopy. J. Raman Spectrosc. 1999, 30, 877–883.

    Article  Google Scholar 

  26. Georgi, C.; Hecker, M.; Zschech, E. Effects of laser-induced heating on Raman stress measurements of silicon and silicon-germanium structures. J. Appl. Phys. 2007, 101, 123104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mann Ho Cho.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, J.M., Lee, W.J., Ma, J.W. et al. The oxidation characteristics of silicon nanowires grown with an au catalyst. Nano Res. 5, 152–163 (2012). https://doi.org/10.1007/s12274-012-0195-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0195-4

Keywords

Navigation