Skip to main content

Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages

Abstract

We report the first application of Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages in a multiplexed dot immunoassay. The assay principle is based on the staining of analyte drops on a nitrocellulose membrane strip by using multicolor nanoparticles conjugated with biospecific probing molecules. Nanoparticles were prepared by a galvanic replacement reaction between the Ag atoms of silver nanocubes and Au ions of tetrachloroauric acid. Depending on the Ag/Au conversion ratio, the particle plasmon resonance was tuned from 450 to 700 nm and the suspension color changed from yellow to blue. The particles of yellow, red, and blue suspensions were functionalized with chicken, rat, and mouse immuno gamma globulin (IgG) molecular probes, respectively. The multiplex capability of the assay was illustrated by a proof-of-concept experiment involving simultaneous one-step determination of target molecules (rabbit anti-chicken, anti-rat, and anti-mouse antibodies) with a mixture of fabricated conjugates. Under naked eye examination, no cross-colored spots or nonspecific bioconjugate adsorption were observed, and the low detection limit was about 20 fmol.

This is a preview of subscription content, access via your institution.

References

  1. Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908.

    Article  CAS  Google Scholar 

  2. Wilson, R. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 2008, 37, 2028–2045.

    Article  CAS  Google Scholar 

  3. Boisselier, E.; Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782.

    Article  CAS  Google Scholar 

  4. Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 2010, 49, 3280–3294.

    CAS  Google Scholar 

  5. Cobley, C. M.; Chen, J.; Cho, E. C.; Wang, L. V.; Xia, Y. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44–56.

    Article  CAS  Google Scholar 

  6. Khlebtsov, N. G.; Dykman, L. A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1–35.

    Article  CAS  Google Scholar 

  7. Nguyen, D. T.; Kim, D. J.; Kim, K. S. Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron 2011, 42, 207–227.

    Article  CAS  Google Scholar 

  8. Zeng, S.; Yong, K. T.; Roy, I.; Dinh, X. Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6, 491–506.

    Article  CAS  Google Scholar 

  9. Hutter, E.; Maysinger, D. Gold nanoparticles and quantum dots for bioimaging. Microsc. Res. Tech. 2011, 74, 592–604.

    Article  CAS  Google Scholar 

  10. Coto-García, A. M.; Sotelo-González, E.; Fernández-Argüelles, M. T.; Pereiro, R.; Costa-Fernández, J. M.; Sanz-Medel, A. Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Anal. Bioanal. Chem. 2011, 399, 29–42.

    Article  Google Scholar 

  11. Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.

    Article  CAS  Google Scholar 

  12. Goldman, E. R.; Medintz, I. L.; Mattoussi, H. Luminescent quantum dots in immunoassays. Anal. Bioanal. Chem. 2006, 384, 560–563.

    Article  CAS  Google Scholar 

  13. Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M. Y.; Nie, S. M. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46.

    Article  CAS  Google Scholar 

  14. Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Corrigendum: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 41–46.

    Article  CAS  Google Scholar 

  15. Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.

    Article  CAS  Google Scholar 

  16. Xing, Y.; Chaudry, Q.; Shen, C.; Kong, K. Y.; Zhau, H. E.; Chung, L. W.; Petros, J. A.; O’Regan, R. M.; Yezhelyev, M. V.; Simons, J. W.; Wang, M. D.; Nie, S. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2007, 2, 1152–1165.

    Article  CAS  Google Scholar 

  17. Wang, H. Q.; Wang, J. H.; Li, Y. Q.; Li, X. Q.; Liu, T. C.; Huang, Z. L.; Zhao, Y. D. Multi-color encoding of poly-styrene microbeads with CdSe/ZnS quantum dots and its application in immunoassay. J. Colloid Interface Sci. 2007, 316, 622–627.

    Article  CAS  Google Scholar 

  18. Summers, C. J.; Menkara, H. M.; Gilstrap, R. A., Jr.; Menkara, M.; Morris, T. Nanocrystalline phosphors for lighting and detection applications. Mater. Sci. Forum, 2010, 654–656, 1130–1133.

    Article  Google Scholar 

  19. Wang, Z.; Wang, X.; Jiang, H.; Ding, J.; Wang, J.; Shi, W. Probing near-infrared quantum dots for imaging and biomedical applications. Adv. Mater. Res. 2012, 345, 3–11.

    Article  Google Scholar 

  20. Pons, T.; Pic, E.; Lequeux, N.; Cassette, E.; Bezdetnaya, L.; Guillemin, F. Marchal, F.; Dubertre, B. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 2010, 4, 2531–2538.

    Article  CAS  Google Scholar 

  21. Khlebtsov, N. G.; Dykman, L. A. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.

    Article  CAS  Google Scholar 

  22. Hu, R.; Yong, K. T.; Roy, I.; Ding, H.; He, S.; Prasad, P. N. Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells. J. Phys. Chem. C 2009, 113, 2676–2684.

    Article  CAS  Google Scholar 

  23. Schultz, S.; Smith, D. R.; Mock, J. J.; Schultz, D. A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA 2000, 97, 996–1001.

    Article  CAS  Google Scholar 

  24. Khlebtsov, B.; Khlebtsov, N. Ultrasharp light-scattering resonances of structured nanospheres: Effects of size-dependent dielectric functions. J. Biomed. Opt. 2006, 11, 044002.

    Article  Google Scholar 

  25. Nehl, C. L.; Hafner, J. H. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 2008, 18, 2415–2419.

    Article  CAS  Google Scholar 

  26. Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    Article  CAS  Google Scholar 

  27. Sun, Y.; Mayers, B. T.; Xia, Y. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002, 2, 481–485.

    Article  CAS  Google Scholar 

  28. Mahmoud, M. A.; El-Sayed, M. A. Gold nanoframes: Very high surface plasmon fields and excellent near-infrared sensors. J. Am. Chem. Soc. 2010, 132, 12704–12710.

    Article  CAS  Google Scholar 

  29. Sun, Y.; Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.

    Article  CAS  Google Scholar 

  30. Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.

    Article  CAS  Google Scholar 

  31. Khlebtsov, B.; Panfilova, E.; Khanadeev, V.; Bibikova, O.; Terentyuk, G.; Ivanov, A.; Rumyantseva, V.; Shilov, I.; Ryabova, A.; Loshchenov, V.; Khlebtsov, N. G. Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: Multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano 2011, 5, 7077–7089.

    Article  CAS  Google Scholar 

  32. Yegorenkova, I. V.; Tregubova, K. V.; Matora, L. Y.; Burygin, G. L.; Ignatov, V. V. Use of ELISA with antiexopolysaccharide antibodies to evaluate wheat-root colonization by the rhizobacterium Paenibacillus polymyxa. Curr. Microbiol. 2010, 61, 376–380.

    Article  CAS  Google Scholar 

  33. Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.

    Article  CAS  Google Scholar 

  34. Khlebtsov, B. N.; Khanadeev, V. A.; Maksimova, I. L.; Terentyuk, G. S.; Khlebtsov, N. G. Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties. Nanotechnol Russia 2010, 5, 454–468.

    Article  Google Scholar 

  35. Khanadeev, V. A.; Khlebtsov, B. N.; Staroverov, S. A.; Vidyasheva, I. V.; Skaptsov, A. A.; Ileneva, E. S.; Bogatyrev, V. A.; Dykman, L. A.; Khlebtsov, N. G. Quantitative cell bioimaging using gold-nanoshell conjugates and phage antibodies. J. Biophotonics 2011, 4, 74–83.

    Article  CAS  Google Scholar 

  36. Dykman, L. A.; Bogatyrev V. A. Gold nanoparticles: Preparation, functionalisation, and applications in biochemistry and immunochemistry. Russ. Chem. Rev. 2007, 76, 181–194.

    Article  CAS  Google Scholar 

  37. Jürgens, L.; Nichtl, A.; Werner, U. Electron density imaging of protein films on gold-particle surfaces with transmission electron microscopy. Cytometry 1999, 37, 87–92.

    Article  Google Scholar 

  38. Khlebtsov, N. G.; Bogatyrev, V. A.; Khlebtsov, B. N.; Dykman, L. A.; Englebienne, P. A multilayer model for gold nanoparticle bioconjugates: Application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method. Colloid J. 2003, 65, 622–635.

    Article  CAS  Google Scholar 

  39. Khlebtsov, B.; Khlebtsov, N. Enhanced solid-phase immunoassay using gold nanoshells: Effect of nanoparticle optical properties. Nanotechnology 2008, 19, 435703.

    Article  Google Scholar 

  40. Chen, C.; Wang, L.; Yu, H.; Wang, J.; Zhou, J.; Tan, Q.; Deng, L. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process. Nanotechnology 2007, 18, 115612.

    Article  Google Scholar 

  41. Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269–6275.

    Article  CAS  Google Scholar 

  42. Zhang, Q.; Cobley, C.; Au, L.; McKiernan, M.; Schwartz, A.; Wen, L. -P.; Chen, J.; Xia, Y. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Appl. Mater. Interf. 2009, 1, 2044–2048.

    Article  CAS  Google Scholar 

  43. Lu, X.; Tuan, H. Y.; Chen, J.; Li, Z. Y.; Korgel, B. A.; Xia, Y. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J. Am. Chem. Soc. 2007, 129, 1733–1742.

    Article  CAS  Google Scholar 

  44. Liao, H.; Hafner, J. H. Gold nanorod bioconjugates. Chem. Mater. 2005, 17, 4636–4641.

    Article  CAS  Google Scholar 

  45. Xie, Z. X.; Charlier, J.; Cousty J. Molecular structure of self-assembled pyrrolidone monolayers on the Au (111) surface: Formation of hydrogen bond-stabilized hexamers. Surf. Sci. 2000, 448, 201–211.

    Article  CAS  Google Scholar 

  46. Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X.; Xia, Y. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005, 5, 473–477.

    Article  CAS  Google Scholar 

  47. Urusov, A. E.; Zherdev, A. V.; Dzantiev B. B. Immunochemical methods of mycotoxin analysis (review). Appl. Biochem. Microbiol. 2010, 46, 253–266.

    Article  CAS  Google Scholar 

  48. Yeh, C. H.; Hung, C. Y.; Chang, T. C.; Lin, H. P.; Lin, Y. C. An immunoassay using antibody-gold nanoparticle conjugate, silver enhancement and flatbed scanner. Microfluid. Nanofluid. 2009, 6, 85–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Khlebtsov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Panfilova, E., Shirokov, A., Khlebtsov, B. et al. Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages. Nano Res. 5, 124–134 (2012). https://doi.org/10.1007/s12274-012-0193-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0193-6

Keywords

  • Silver nanocubes
  • Au/Ag nanocages
  • plasmon resonance
  • functionalized plasmonic nanoparticles
  • dot immunoassay
  • multiplexed biosensing