Skip to main content
Log in

Semiconducting carbon nanotube/fullerene blended heterojunctions for photovoltaic near-infrared photon harvesting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate that the near-infrared (NIR) absorptivity of semiconducting single-walled carbon nanotubes (s-SWCNTs) can be harnessed in blended heterojunctions with the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Photogenerated charge separation is efficiently driven by the ultrahigh interfacial area of the blends and the favorable energy offsets between the two materials. NIR-sensitive photovoltaic and photodetector devices utilizing the stack (indium tin oxide/ca. 10 nm s-SWCNT:PCBM/100 nm C60/10 nm 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/Ag) were fabricated with NIR power conversion efficiencies >1.3% and peak, zero bias external quantum efficiency of 18% at λ = 1205 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moet, D. J. D.; Lenes, M.; Morana, M.; Azimi, H.; Brabec, C. J.; Blom, P. W. M. Enhanced dissociation of charge-transfer states in narrow band gap polymer:fullerene solar cells processed with 1,8-octanedithiol. Appl. Phys. Lett. 2010, 96, 213506.

    Article  Google Scholar 

  2. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497–500.

    Article  CAS  Google Scholar 

  3. Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667.

    Article  CAS  Google Scholar 

  4. Bindl, D. J.; Safron, N. S.; Arnold, M. S. Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces. ACS Nano 2010, 4, 5657–5664.

    Article  CAS  Google Scholar 

  5. Lebedkin, S.; Hennrich, F.; Kiowski, O.; Kappes, M. M. Photophysics of carbon nanotubes in organic polymer-toluene dispersions: Emission and excitation satellites and relaxation pathways. Phys. Rev. B 2008, 77, 165429.

    Article  Google Scholar 

  6. Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synthetic Met. 1999, 103, 2555–2558.

    Article  CAS  Google Scholar 

  7. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  CAS  Google Scholar 

  8. Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.

    Article  CAS  Google Scholar 

  9. Avouris, P.; Martel, R. Progress in carbon nanotube electronics and photonics. MRS Bull. 2010, 35, 306–313.

    Article  CAS  Google Scholar 

  10. Ham, M. H.; Paulus, G. L. C.; Lee, C. Y.; Song, C.; Kalantarzadeh, K.; Choi, W.; Han, J. H.; Strano, M. S. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. ACS Nano 2010, 4, 6251–6259.

    Article  CAS  Google Scholar 

  11. Holt, J. M.; Ferguson, A. J.; Kopidakis, N.; Larsen, B. A.; Bult, J.; Rumbles, G.; Blackburn, J. L. Prolonging charge separation in P3HT-SWNT composites using highly enriched semiconducting nanotubes. Nano Lett. 2010, 10, 4627–4633.

    Article  CAS  Google Scholar 

  12. Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

    Article  Google Scholar 

  13. Arnold, M. S.; Zimmerman, J. D.; Renshaw, C. K.; Xu, X.; Lunt, R. R.; Austin, C. M.; Forrest, S. R. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. Nano Lett. 2009, 9, 3354–3358

    Article  CAS  Google Scholar 

  14. Bindl, D. J.; Wu, M. -Y.; Prehn, F. C.; Arnold, M. S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 2011, 11, 455–460.

    Article  CAS  Google Scholar 

  15. Kazaoui, S.; Minami, N.; Nalini, B.; Kim, Y.; Hara, K. Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J. Appl. Phys. 2005, 98, 084314.

    Article  Google Scholar 

  16. Hoppe, H.; Sariciftci, N. S. Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 2006, 16, 45–61.

    Article  CAS  Google Scholar 

  17. Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864–868.

    Article  CAS  Google Scholar 

  18. Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005, 5, 579–583.

    Article  CAS  Google Scholar 

  19. Tsyboulski, D. A.; Rocha, J. D. R.; Bachilo, S. M.; Cognet, L.; Weisman, R. B. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 2007, 7, 3080–3085.

    Article  CAS  Google Scholar 

  20. Islam, M. F.; Milkie, D. E.; Kane, C. L.; Yodh, A. G.; Kikkawa, J. M. Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. Phys. Rev. Lett. 2004, 93, 037404.

    Article  CAS  Google Scholar 

  21. Miyauchi, Y.; Matsuda, K.; Yamamoto, Y.; Nakashima, N.; Kanemitsu, Y. Length-dependent photoluminescence lifetimes in single-walled carbon nanotubes. J. Phys. Chem. C 2010, 114, 12905–12908.

    Article  CAS  Google Scholar 

  22. Street, R. A.; Schoendorf, M. Interface state recombination in organic solar cells. Phys. Rev. B 2010, 81, 205307.

    Article  Google Scholar 

  23. Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005, 5, 579–583

    Article  CAS  Google Scholar 

  24. Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297–302.

    Article  CAS  Google Scholar 

  25. Siitonen, A. J.; Tsyboulski, D. A.; Bachilo, S. M.; Weisman, R. B. Dependence of exciton mobility on structure in single-walled carbon nanotubes. J. Phys. Chem. Lett. 2010, 1, 2189–2192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Arnold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bindl, D.J., Brewer, A.S. & Arnold, M.S. Semiconducting carbon nanotube/fullerene blended heterojunctions for photovoltaic near-infrared photon harvesting. Nano Res. 4, 1174–1179 (2011). https://doi.org/10.1007/s12274-011-0167-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0167-0

Keywords

Navigation