Skip to main content

Light Energy Conversion at Carbon Nanotubes - Organic and Inorganic Interfaces: Photovoltaics, Photodetectors and Bolometers

  • Chapter
  • First Online:
Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

Abstract

This chapter presents a review of recent exploration in the field of the light energy conversion to electrical conductivity at the interface between carbon nanotubes (CNTs) and other organic and inorganic materials. Photophysics of these composites is rich, intriguing and comprised of novel phenomena related to the light harvesting, photoinduced charge transfer, charge separation and transport in nanoscaled objects composed from CNTs and small molecules, polymers, fullerenes, quantum dots, bulk and nanostructured semiconductors. The optics and optoelectronics of pristine carbon nanotubes (individuals and network) have been studied quite intensively for the past two decades. The photoinduced processes of CNTs interfaced with other compounds, however, still require thoughtful investigation to understand the fundamental principles governing the conversion of light to electrical energy. This chapter will focus primarily on the recent advances which have shed light on the nature of photoconversion mechanisms in CNT composite with a short background on previous studies in the field of photoinduced charge transfer, hybrid photovoltaics, photodetecting devices and bolometers. The first two sections of this chapter will cover photoinduced charge transfer, charge separation and related photovoltaic effect at the interface between CNTs and small molecules, fullerenes, polymers, quantum dots and how the latest achievements in this field can be employed in designing a new generation of hybrid solar cells and photodetectors. The next section will present the photophysics of charge generation and separation at CNT/semiconductor heterojunction with major attention paid to bulk and nanostructured Si, as it is the most common material in the solar cell industry. We will review the current status of CNT/Si solar cells, point out their features and excellent PV performance, and discuss the prospects in the future research and development of these promising photoactive nanohybrids. Finally, in the last section, we will describe CNT based bolometers and discuss more specifically the bolometric response of CNT/polymer composite. We will provide a comparative analysis of pristine CNT and CNT/polymer bolometers emphasizing the critical role of polymer matrix in achieving high responsivity and temperature coefficient of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujiwara, A., Matsuoka, Y., Suematsu, H., Ogawa, N., Miyano, K., Kataura, H., Maniwa, Y., Suzuki, S., Achiba, Y.: Photoconductivity in semiconducting single-walled carbon nanotubes. Jpn. J. Appl. Phys. 40, L1229–L1231 (2001)

    Google Scholar 

  2. Levitsky, I.A., Euler, W.B.: Photoconductivity of single wall carbon nanotubes under CW NIR illumination. Appl. Phys. Lett. 83, 1857–1859 (2003)

    Google Scholar 

  3. Freitag, M., Martin, Y., Misewich, J.A., Martel, R., Avouris, P.: Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003)

    Google Scholar 

  4. Saito, R., Dresselhaus, G., Dresselhaus, S.M.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Google Scholar 

  5. Dresselhaus, M.S., Dresselhaus, G., Avouris, P.: Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer, New York (2000)

    Google Scholar 

  6. Durkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2009)

    Google Scholar 

  7. Xiao, K., Liu, Y., Hu, P., Yu, G., Wang, X., Zhu, D.: High-mobility thin-film transistors based on aligned carbon nanotubes. Appl. Phys. Lett. 83, 150–152 (2003)

    Google Scholar 

  8. Sankapal, B.R., Setyowati, K., Chen, J., Liu, H.: Electrical properties of air-stable, iodine-doped carbon-nanotube-polymer composites. Appl. Phys. Lett. 91, 173103 (2007)

    Google Scholar 

  9. Lee, R.S., Kim, H.J., Fischer, J.E., Thess, A., Smalley, R.E.: Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388, 255–257 (1997)

    Google Scholar 

  10. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282, 95–98 (1998)

    Google Scholar 

  11. Sgobba, V., Guldi, D.M.: Ground and excited state charge transfer and its implications. In: Guldi, D.M., Martin, M. (eds.) Carbon Nanotubes and Related Structures, pp. 233–289. Wiley-VCH, Weinheim (2010)

    Google Scholar 

  12. Karousis, N., Tagmatarchis, N.: Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110, 5366–5397 (2010)

    Google Scholar 

  13. Ando, T.: Excitons in carbon nanotubes. J. Phys. Soc. Jpn. 66, 1066–1073 (1997)

    MathSciNet  Google Scholar 

  14. Perebeinos, V., Tersoff, J., Avouris, P.: Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004)

    Google Scholar 

  15. Wang, F., Dukovic, G., Brus, L.E., Heinz, T.F.: The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005)

    Google Scholar 

  16. Balasubramanian, K., Friedrich, M., Fan, Y., Wannek, U., Mews, A., Burghard, M., Kern, K.: Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl. Phys. Lett. 84, 2400–2402 (2004)

    Google Scholar 

  17. Freitag, M., Tsang, J.C., Bol, A., Yuan, D., Liu, J., Avouris, P.: Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett. 7, 2037–2042 (2007)

    Google Scholar 

  18. Lee, J.U.: Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 87, 073101 (2005)

    Google Scholar 

  19. Lee, J.U., Codella, P.J., Pietrzykowski, M.: Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p–n diodes. Appl. Phys. Lett. 90, 053103 (2007)

    Google Scholar 

  20. Lien, D.H., Hsu, W.K., Zan, H.W., Tai, N.H., Tsai, C.H.: Photocurrent amplification at carbon nanotube—metal contacts. Adv. Mater. 18, 98–103 (2006)

    Google Scholar 

  21. Mohite, A., Chakraborty, S., Gopinath, P., Sumanasekera, G.U., Alphenaar, B.W.: Displacement current detection of photoconduction in carbon nanotubes. Appl. Phys. Lett. 86, 061114 (2005)

    Google Scholar 

  22. Merchant, C.A., Markovica, N.: Effects of diffusion on photocurrent generation in single-walled carbon nanotube films. Appl. Phys. Lett. 92, 243510 (2008)

    Google Scholar 

  23. Fujiwara, A., Matsuoka, Y., Suematsu, H., Ogawa, N., Miyano, K., Kataura, H., Maniwa, Y., Suzuki, S., Achiba, Y.: Photoconductivity of single-wall carbon nanotube films. Carbon 42, 919–922 (2004)

    Google Scholar 

  24. Sarker, B.K., Arif, M., Stokes, P., Khondaker, S.I.: Diffusion mediated photoconduction in multiwalled carbon nanotube films. J. Appl. Phys. 106, 074307-1–074307-4 (2009)

    Google Scholar 

  25. Lu, S., Panchapakesan, B.: Photoconductivity in single wall carbon nanotube sheets. Nanotechnology 17, 1843–1850 (2006)

    Google Scholar 

  26. Liu, Y., Lu, S., Panchapakesan, B.: Alignment enhanced photoconductivity inside single wall carbon nanotube films. Nanotechnology 20, 035203 (2009)

    Google Scholar 

  27. Rao, F., Liu, X., Li, T., Zhou, Y., Wang, Y.: The synthesis and fabrication of horizontally aligned single-walled carbon nanotubes suspended across wide trenches for infrared detecting application. Nanotechnology 20, 055501 (2009)

    Google Scholar 

  28. Sun, J.-L., Xu, J., Zhu, Z.-L., Li, B.: Disordered multi-walled carbon nanotube mat for light spot position detecting. Appl. Phys. A 91, 229–233 (2008)

    Google Scholar 

  29. Wei, J., Sun, J.-L., Zhu, J.-L., Wang, K., Wang, Z., Luo, J., Wu, D., Cao, A.: Carbon nanotube macrobundles for light sensing. Small 2, 988–993 (2006)

    Google Scholar 

  30. Itkis, M.E., Borondics, F., Yu, A., Haddon, R.C.: Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 312, 413–416 (2006)

    Google Scholar 

  31. Jia, Y., Cao, A., Bai, X., Li, Z., Zhang, L., Guo, N., Wei, J., Wang, K., Zhu, H., Wu, D., Ajayan, P.M.: Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 11, 1901–1905 (2011)

    Google Scholar 

  32. Li, Z., Kunets, V.P., Saini, V., Xu, Y., Dervishi, E., Salamo, G.J., Biris, A.R., Biris, A.S.: Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano 3, 1407 (2009)

    Google Scholar 

  33. Ong, P.-L., Euler, W.B., Levitsky, I.A.: Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunction. Nanotechnology 21, 105203 (2010)

    Google Scholar 

  34. Wadhwa, P., Liu, B., McCarthy, M.A., Wu, Z., Rinzler, A.G.: Electronic junction control in a nanotube-semiconductor Schottky junction solar cell. Nano Lett. 10, 5001–5005 (2010)

    Google Scholar 

  35. Dennler, G., Brabec, C.J.: Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  36. Chen, C.-Y., Wang, M., Li, J.-Y., Pootrakulchote, N., Alibabaei, L., Ngoc-le, C., Decoppet, J.D., Tsai, J., Gratzel, C., Wu, C., Zakeeruddin, S.M., Gratzel, M.: Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3, 3103–3109 (2009)

    Google Scholar 

  37. Yu, Q., Wang, Y., Yi, Z., Zu, N., Zhang, J., Zhang, M., Wang, P.: High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano 4, 6032–6038 (2010)

    Google Scholar 

  38. Bindl, D.J., Wu, M.-Y., Prehn, F.C., Arnold, M.S.: Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 11, 455–460 (2011)

    Google Scholar 

  39. Bottari, G., De la Torre, G., Guldi, D.M., Torres, T.: Covalent and noncovalent phthalocyanine carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem. Rev. 110, 6768–6816 (2010)

    Google Scholar 

  40. Imahori, H., Umeyama, T.: Donor–acceptor nanoarchitecture on semiconducting electrodes for solar energy conversion. J. Phys. Chem. C 113, 9029–9039 (2009)

    Google Scholar 

  41. Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, S.W., Kittrell, C., Hauge, R.H., Tour, J.M., Smalley, E.R.: Electronic structure control of single-walled carbon nanotubes. Science 301, 1519–1522 (2003)

    Google Scholar 

  42. Itkis, M.E., Niyogi, S., Meng, M.E., Hamon, M.A., Hu, H., Haddon, R.C.: Spectroscopic study of the fermi level electronic structure of single-walled carbon nanotubes. Nano Lett. 2, 155 (2002)

    Google Scholar 

  43. Maligaspe, E., Sandanayaka, A.S.D., Hasobe, T., Ito, O., D’Souza, F.: Sensitive efficiency of photoinduced electron transfer to band gaps of semiconductive single-walled carbon nanotubes with supramolecularly attached zinc porphyrin bearing pyrene glues. J. Am. Chem. Soc. 132, 8158–8164 (2010)

    Google Scholar 

  44. Sandanayaka, A.S.D., Subbaiyan, N.K., Das, S.K., Chitta, R., Maligaspe, E., Hasobe, T., Ito, O., D’Souza, F.: Diameter sorted SWNT-porphyrin and SWNT-phthalocyanine conjugates for light-energy harvesting. ChemPhysChem 12, 2266–2273 (2011)

    Google Scholar 

  45. D’Souza, F., Smith, P.M., Zandler, M.E., McCarty, A.L., Itou, M., Araki, Y., Ito, O.: Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin and fullerene: a model for the photosynthetic antenna-reaction center complex. J. Am. Chem. Soc. 126, 7898–7907 (2004)

    Google Scholar 

  46. Baskaran, D., Mays, J.W., Zhang, X.P., Bratcher, M.S.: Carbon Nanotubes with covalently linked porphyrin antenna: photoinduced electron transfer. J. Am. Chem. Soc. 127, 6916 (2005)

    Google Scholar 

  47. Alvaro, M., Atienzar, P., De la Cruz, P., Delgado, J.L., Troiani, V., Garcia, H., Langa, F., Palkar, A., Echegoyen, L.: Synthesis, photochemistry, and electrochemistry of single-walled carbon nanotubes with pendent pyridyl groups and of their metal complexes with zinc porphyrin. Comparison with pridyl bearing fullerenes. J. Am. Chem. Soc. 128, 6626–6635 (2006)

    Google Scholar 

  48. Campidelli, S., Sooambar, C., Diz, E.L., Ehli, C., Guldi, D.M., Prato, M.: Dendrimer functionalized single-walled carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J. Am. Chem. Soc. 128, 12544 (2006)

    Google Scholar 

  49. Yu, J., Mathew, S., Flavel, B.S., Johnston, M.R., Shapter, J.G.: Ruthenium porphyrin functionalized single-walled carbon nanotube arrays. A step toward light harvesting antenna and multibit information storage. J. Am. Chem. Soc. 130, 6788–8796 (2008)

    Google Scholar 

  50. De la Torre, G., Blau, W., Torres, T.: A survey on the functionalized single-walled nanotubes. The chemical attachment of phthalocyanine moieties. Nanotechnology 14, 765 (2003)

    Google Scholar 

  51. Xu, H.-B., Chen, H.-Z., Shi, M.-M., Bai, R., Wang, M.: A novel donor–acceptor heterojunction from single-walled carbon nanotubes functionalized by erbium bisphthalocyanine. Mater. Chem. Phys. 94, 342–346 (2005)

    Google Scholar 

  52. Yang, Z., Pu, H., Yuan, J., Wan, D., Liu, Y.: Phthalocyanines-MWCNT hybrid materials: fabrication, aggregation and photoconductivity properties improvement. Chem. Phys. Lett. 465, 73–77 (2008)

    Google Scholar 

  53. Dyke, C.A., Tour, J.M.: Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151–11159 (2004)

    Google Scholar 

  54. Ballesteros, B., de la Torre, G., Ehli, C., Rahman, G.M.A., Agullo′-Rueda, F., Guldi, D.M., Torres, T.: Single-wall carbon nanotubes bearing covalently linked phthalocyanines—photoinduced electron transfer. J. Am. Chem. Soc. 129, 5061–5068 (2007)

    Google Scholar 

  55. Guldi, D.M., Marcaccio, M., Paolucci, D., Paolucci, F., Tagmatarchis, N., Tasis, D., Va′zquez, E., Prato, M.: Single-wall carbon nanotube-ferrocene nanohybrids: observing intramolecular electron transfer in functionalized SWNTs. Angew. Chem. Int. Ed. 42, 4206–4209 (2003)

    Google Scholar 

  56. Yang, X., Lu, Y., Ma, Y., Li, Y., Du, F., Chen, Y.: Noncovalent nanohybrid of ferrocene with single-walled carbon nanotubes and its enhanced electrochemical property. Chem. Phys. Lett. 420, 416–420 (2006)

    Google Scholar 

  57. Segura, J.L., Martin, N.: New concepts in tetrathiofulvalene chemistry. Angew. Chem. Int. Ed. 40, 1372–1409 (2001)

    Google Scholar 

  58. Martin, N., Sanchez, L., Herranz, M.A., Illescas, B., Guldi, D.M.: Electronic communication in tetrathiofulvalene (TTF)/C60 systems: toward molecular solar energy conservation materials? Acc. Chem. Res. 40, 1015–1024 (2007)

    Google Scholar 

  59. Kam, N.W.S., Jessop, T.C., Wender, P.A., Dai, H.: Nanotube molecular transporters: internalization of carbon nanotubes-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)

    Google Scholar 

  60. Jang, S.R., Vittal, R., Kim, K.J.: Incorporation of single-walled carbon nanotubes in dye-sensitized TiO2 solar cells. Langmuir 20, 9807–9810 (2004)

    Google Scholar 

  61. Nakashima, N., Tomonari, Y., Murakami, H.: Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization. Chem. Lett. 31, 638 (2002)

    Google Scholar 

  62. Guldi, D.M., Rahman, G.M.A., Jux, N., Tagmatarchis, N., Prato, M.: Integrating single-wall carbon nanotubes into donor–acceptor nanohybrids. Angew. Chem. Int. Ed. 43, 5526 (2004)

    Google Scholar 

  63. Yanagi, K., Iakoubovskii, K., Kazaoui, S., Minami, N., Maniwa, Y., Miyata, Y., Kataura, H.: Light-harvesting function of β-carotene inside carbon nanotubes. Phys. Rev. B 74, 155420 (2006)

    Google Scholar 

  64. Yanagi, K., Miyata, Y., Kataura, H.: Highly stabilized β-carotene in carbon nanotubes. Adv. Mater. 18, 437 (2006)

    Google Scholar 

  65. Yanagi, K., Iakoubovskii, K., Matsui, H., Matsuzaki, H., Okamoto, H., Miyata, Y., Maniwa, Y., Kazaoui, S., Minami, N., Kataura, H.: Photosensitive function of encapsulated dye in carbon nanotubes. J. Am. Chem. Soc. 129, 4992 (2007)

    Google Scholar 

  66. Marcus, R.A., Sutin, N.: Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265–322 (1985)

    Google Scholar 

  67. Marcus, R.A.: Electron transfer reactions in chemistry: theory and experiment. Angew. Chem. Int. Ed. 32, 1111–1121 (1993)

    Google Scholar 

  68. Sandanayaka, A.S.D., Maligaspe, E., Hasobe, T., Ito, O., D’Souza, F.: Band gap dependent electron transfer in supramolecular nanohybrids of (6,5)- or (7,5)-enriched semiconducting SWNT as donors and fullerenes as acceptor. Chem. Commun. 46, 8749 (2010)

    Google Scholar 

  69. Das, S.K., Subbaiyan, N.K., D’Souza, F., Sandanayaka, A.S.D., Hasobe, T., Ito, O.: Photoinduced processes of the supramolecularly functionalized semi-conductive SWNTs with porphyrins via ion-pairing interactions. Energy Environ. Sci. 4, 707–716 (2011)

    Google Scholar 

  70. Guldi, D.M., Rahman, G.M.A., Prato, M., Jux, N., Qin, S., Ford, W.T.: Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. Angew. Chem. Int. Ed. 44, 2015–2018 (2005)

    Google Scholar 

  71. Rahman, G.M.A., Troeger, A., Sgobba, V., Guldi, D.M., Jux, N., Tchoul, M.N., Ford, W.T., Mateo-Alonso, A., Prato, M.: Improving photocurrent generation: supramolecularly and covalently functionalized single-wall carbon nanotubes-polymer/porphyrin donor–acceptor nanohybrids. Chem. Eur. J. 14, 8837–8846 (2008)

    Google Scholar 

  72. Umeyama, T., Fujita, M., Tezuka, N., Kadota, N., Matano, Y., Imahori, H.: Electrophoretic deposition of single-walled carbon nanotubes covalently modified with bulky porphyrins on nanostructured SnO2 electrodes for photoelectrochemical devices. J. Phys. Chem. C 111, 11484 (2007)

    Google Scholar 

  73. Hasobe, T., Fukuzumi, S., Kamat, P.V.: Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew. Chem. Int. Ed. 45, 755–759 (2006)

    Google Scholar 

  74. Hasobe, T., Fukuzumi, S., Kamat, P.V.: Organized assemblies of single-wall carbon nanotubes and porphyrin for photochemical solar cells: charge injection from excited porphyrin into single-walled carbon nanotubes. J. Phys. Chem. B 110, 25477–25484 (2006)

    Google Scholar 

  75. Rahman, G.M.A., Guldi, D.M., Cagnoli, R., Mucci, A., Schenetti, L., Vaccari, L., Prato, M.: Combining single wall carbon nanotubes and photoactive polymers for photoconversion. J. Am. Chem. Soc. 127, 10051–10057 (2005)

    Google Scholar 

  76. Guldi, D.M., Rahman, G.M.A., Sgobba, V., Jux, N., Campidelli, S., Prato, M.: Supramolecular assemblies of different carbon nanotubes for photoconversion processes. Adv. Mater. 18, 2264–2269 (2006)

    Google Scholar 

  77. Ham, M.-H., Choi, J.H., Boghossian, A.A., Jeng, E.S., Graff, R.A., Heller, D.A., Chang, A.C., Mattis, A., Bayburt, T.H., Grinkova, Y.V., Zeiger, A.S., Van Vliet, K.J.E., Hobbie, E.K., Sligar, S.G., Wraight, C.A., Strano, M.S.: Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat. Chem. 2, 929–936 (2010)

    Google Scholar 

  78. Chen, T., Wang, S., Yang, Z., Feng, Q., Sun, X., Li, L., ShengWang, Z., Peng, H.: Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem. Int. Ed. 50, 1815–1819 (2011)

    Google Scholar 

  79. Peng, H., Jain, M., Li, Q., Peterson, D.E., Zhu, Y., Jia, Q.: Vertically aligned pearl-like carbon nanotube arrays for fiber spinning. J. Am. Chem. Soc. 130, 1130–1131 (2008)

    Google Scholar 

  80. Peng, H., Jain, M., Peterson, D.E., Zhu, Y., Jia, Q.: Composite carbon nanotubes/silica fibers with improved mechanical strengths and electrical conductivities. Small 4, 1964–1967 (2008)

    Google Scholar 

  81. Kymakis, E., Amaratunga, G.A.J.: Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix. Sol. Energy Mater. Sol. Cells 80, 465–472 (2003)

    Google Scholar 

  82. Bhattacharyya, S., Kymakis, E., Amaratunga, G.A.J.: Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem. Mater. 16, 4819–4823 (2004)

    Google Scholar 

  83. Hatton, R.A., Blanchard, N.P., Miller, A.J., Silva, S.R.P.: A multi-wall carbon nanotube-molecular semiconductor composite for bi-layer organic solar cells. Physica E 27, 124–127 (2007)

    Google Scholar 

  84. Hatton, R.A., Blanchard, N.P., Stolojan, V., Miller, A.J., Silva, S.R.P.: Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films. Langmuir 23, 6424–6430 (2007)

    Google Scholar 

  85. Feng, W., Fujii, A., Ozaki, M., Yoshino, K.: Perylene derivative sensitized multi-walled carbon nanotube thin film. Carbon 43, 2501–2507 (2005)

    Google Scholar 

  86. Klare, J.E., Murray, I.P., Goldberger, J., Stupp, S.I.: Assembling p-type molecules on single wall carbon nanotubes for photovoltaic devices. Chem. Commun. 25, 3705–3707 (2009)

    Google Scholar 

  87. Oregan, B., Grätzel, M.: A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Google Scholar 

  88. Grätzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42(11), 1788–1798 (2009)

    Google Scholar 

  89. Jung, K.-H., Hong, J.S., Vittal, R., Kim, K.-J.: Enhanced photocurrent of dye-sensitized solar cells by modification of TiO2 with carbon nanotubes. Chem. Lett. 31, 864–865 (2002)

    Google Scholar 

  90. Kongkanand, A., Dominguez, R.M., Kamat, P.V.: Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 7, 676–680 (2007)

    Google Scholar 

  91. Brown, P., Takechi, K., Kamat, P.V.: Single-walled carbon nanotube scaffolds for dye-sensitized solar cells. J. Phys. Chem. C 112, 4776–4782 (2008)

    Google Scholar 

  92. Lee, W., Lee, J., Lee, S., Yi, W., Han, S.H., Cho, B.W.: Enhanced charge collection and reduced recombination of CdS/TiO2 quantum dots sensitized solar cells in the presence of single-walled carbon nanotubes. Appl. Phys. Lett. 92, 153510 (2008)

    Google Scholar 

  93. Zhang, S., Niu, H., Lan, Y., Cheng, C., Xu, J., Wang, X.: Synthesis of TiO2 nanoparticles on plasma-treated carbon nanotubes and its application in photoanodes of dye-sensitized solar cells. J. Phys. Chem. C 115, 22025–22034 (2011)

    Google Scholar 

  94. Yu, J., Fan, J., Cheng, B.: Dye-sensitized solar cells based on anatase TiO2 hallow spheres/carbon nanotube composite films. J. Power Sources 196, 7891–7898 (2011)

    Google Scholar 

  95. Yen, C.Y., Lin, Y.F., Hung, C.H., Tseng, Y.H., Ma, C.C.M., Chang, M.C., Shao, H.: The effects of synthesis procedures ob the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites. Nanotechnology 19, 045604 (2008)

    Google Scholar 

  96. Miller, A.J., Hatton, R.A., Silva, S.R.P.: Interpenetrating multiwall carbon nanotube electrodes for organic solar cells. Appl. Phys. Lett. 89, 133117 (2006)

    Google Scholar 

  97. Lee, T.Y., Alegaonkar, P.S., Yoo, J.B.: Fabrication of dye-sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films 515(12), 5131–5135 (2007)

    Google Scholar 

  98. Brennan, L.J., Byrne, M.T., Bari, M., Gun’ko, Y.K.: Carbon nanomaterials for dye-sensitized solar cell applications: a bright future. Adv. Energy Mater. 1, 472–485 (2011)

    Google Scholar 

  99. Kyaw, A.K.K., Tantang, H., Wu, T., Ke, L., Peh, C., Huang, Z.H., Zeng, X.T., Demir, H.V., Zhang, Q., Sun, X.W.: Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode. Appl. Phys. Lett. 99, 021107 (2011)

    Google Scholar 

  100. Yen, M.Y., Hsiao, M.C., Liao, S.H., Liu, P.-I., Tsai, H.M., Ma, C.C.M., Pu, N.W., Ger, M.D.: Preparation of graphene/carbon multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon 49, 3597–3606 (2011)

    Google Scholar 

  101. Zhang, S., Ji, C., Bian, Z., Liu, R., Xia, X., Yun, D., Zhang, L., Huang, C., Cao, A.: Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Lett. 11, 3383–3387 (2011)

    Google Scholar 

  102. Chen, T., Qiu, L., Cai, Z., Gong, F., Yang, Z., Wang, Z., Peng, H.: Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett. 12(5), 2568–2572 (2012)

    Google Scholar 

  103. Williams, G., Seger, B., Kamat, P.V.: TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008)

    Google Scholar 

  104. Yang, N., Zhai, J., Wang, D., Chen, Y.S., Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010)

    Google Scholar 

  105. Khairoutdinov, R.F., Doubova, L.V., Haddon, R.C., Saraf, L.: Persistent photoconductivity in chemically modified single-wall carbon nanotubes. J. Phys. Chem. B 108, 19976–19981 (2004)

    Google Scholar 

  106. Hecht, D.S., Ramirez, R.J.A., Briman, M., Artukovic, E., Chichak, K.S., Stoddart, J.F., Gruner, G.: Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett. 6, 2031–2036 (2006)

    Google Scholar 

  107. Zhao, Y.-L., Hu, L., Gruner, G., Stoddart, J.F.: A tunable photosensor. J. Am. Chem. Soc. 130, 16996–17003 (2008)

    Google Scholar 

  108. Guo, X., Huang, L., O’Brien, S., Kim, P., Nuckolls, C.: Directing and sensing changes in molecular confirmation on individual carbon nanotube field effect transistors. J. Am. Chem. Soc. 127, 15045–15047 (2005)

    Google Scholar 

  109. Simmons, J.M., In, I., Campbell, V.E., Mark, T.J., Léonard, F., Gopalan, P., Eriksson, M.A.: Optically modulated conduction in chromophore functionalized single-wall carbon nanotubes. Phys. Rev. Lett. 98, 086802 (2007)

    Google Scholar 

  110. Zhou, X., Zifer, T., Wong, B.M., Krafcik, K.L., Léonard, F., Vance, A.L.: Color detection using chromophore-nanotube hybrid devices. Nano Lett. 9, 1028–1033 (2009)

    Google Scholar 

  111. Vijayakumar, C., Balan, B., Kim, M.J., Takeuchi, M.: Noncovalent functionalization of SWNTs with azobenzene-containing polymers: solubility, stability, and enhancement of photoresponsive properties. J. Phys. Chem. C 115, 4533–4539 (2011)

    Google Scholar 

  112. Huang, C., Wang, R.K., Wong, B.M., McGee, D.J., Leonard, F., Kim, Y.J., Johnson, K.F., Arnold, M.S., Eriksson, M.A., Gopalan, P.: Spectroscopic properties of nanotube-chromophore hybrids. ACS Nano 5(10), 7767–7774 (2011)

    Google Scholar 

  113. Del Valle, M., Gutierrez, R., Tejedor, C., Cuniberti, G.: Tuning the conductance of a molecular switch. Nat. Nanotechnol. 2, 176–179 (2007)

    Google Scholar 

  114. Feng, Y., Zhang, X., Ding, X., Feng, W.: A light-driven reversible conductance switch based on a few-walled carbon nanotube/azobenzene hybrid linked by a flexible spacer. Carbon 48, 3091–3096 (2010)

    Google Scholar 

  115. Kymakis, E.: Photovoltaic devices based on carbon nanotubes and related structures. In: Guldi, D.M., Martin, M. (eds.) Carbon Nanotubes and Related Structures, pp. 291–303. Wiley-VCH, Weinheim (2010)

    Google Scholar 

  116. Peng, X., Chen, J., Misewich, J.A., Wong, S.S.: Carbon nanotube–nanocrystal heterostructures. Chem. Soc. Rev. 38, 1076–1098 (2009)

    Google Scholar 

  117. Sgobba, V., Guildi, D.M.: Carbon nanotube-electronic/electrochemical properties and applications for nanoelectronics and photonics. Chem. Soc. Rev. 38, 165–184 (2009)

    Google Scholar 

  118. Yang, Z.P., Ci, L., Bur, J.A., Lin, S.Y., Ajayan, P.M.: Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 8, 446–451 (2008)

    Google Scholar 

  119. Tsyboulski, D.A., Rocha, J.D.R., Bachilo, S.M., Cognet, L., Weisman, R.B.: Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 7, 3080–3085 (2007)

    Google Scholar 

  120. Kazaoui, S., Minami, N., Nalini, B., Kim, Y., Hara, K.: Near-infrared Photoconductive and Photovoltaic devices using Single-Wall carbon Nanotubes in Conductive Polymer films. J. Appl. Phys. 98, 084314 (2005)

    Google Scholar 

  121. Bindl, D.J., Safron, N.S., Arnold, M.S.: Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces. ACS Nano 4, 5657–5664 (2010)

    Google Scholar 

  122. Arnold, M.S., Zimmerman, Z.D., Renshaw, C.K., Xu, X., Lunt, R.R., Austin, C.M., Forrest, S.R.: Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. Nano Lett. 9, 3354–3358 (2009)

    Google Scholar 

  123. D’Souza, F., Chitta, R., Sandanayaka, A.S.D., Subbaiyan, N.K., D’Souza, L., Araki, Y., Ito, O.: Supramolecular carbon nanotubefullerene donor–acceptor hybrids for photoinduced electron transfer. J. Am. Chem. Soc. 129, 15865–15871 (2007)

    Google Scholar 

  124. Shen, Y., Reparaz, J.S., Wagner, M.R., Hoffmann, A., Thomsen, C., Lee, J.-O., Heeg, S., Hatting, B., Reich, S., Saeki, A., Seki, S., Yoshida, K., Babu, S.S., Möhwald, H., Nakanishi, T.: Assembly of carbon nanotubes and alkylated fullerenes: nanocarbon hybrid towards photovoltaic applications. Chem. Sci. 2, 2243–2250 (2011)

    Google Scholar 

  125. Pradhan, B., Setyowati, K., Liu, H., Waldeck, D.H., Chen, J.: Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett. 8, 1142–1146 (2008)

    Google Scholar 

  126. Aliev, A.E.: Bolometric detector on the basis of single-wall carbon nanotubes/polymer composite. Infrared Phys. Technol. 51, 541–545 (2008)

    Google Scholar 

  127. Tzolov, M.B., Kuo, T.-F., Straus, D.A., Yin, A., Xu, J.: Carbon nanotube silicon heterojunction arrays and infrared photocurrent responses. J. Phys. Chem. C 111, 5800–5804 (2007)

    Google Scholar 

  128. Ong, P.-L., Euler, W.B., Levitsky, I.A.: Carbon nanotube-Si diode as a detector of mid-infrared illumination. Appl. Phys. Lett. 96, 033106 (2010)

    Google Scholar 

  129. Kumar, P., Chand, S.: Recent progress and future aspects of organic solar cells. Prog. Photovolt. Res. Appl. 20, 377–415 (2012)

    Google Scholar 

  130. Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.Q., Dante, M., Heeger, A.J.: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)

    Google Scholar 

  131. Liang, Y., Feng, D., Wu, Y., Tsai, S.T., Li, G., Ray, C., Yu, L.: Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J. Am. Chem. Soc. 131, 7792–7799 (2009)

    Google Scholar 

  132. Liang, Y., Xu, Z., Xia, J., Tsai, S.T., Wu, Y., Li, G., Ray, C., Yu, L.: For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010)

    Google Scholar 

  133. http://www.m-kagaku.co.jp/english/aboutmcc/RC/special/feature1.html

  134. http://www.osa-direct.com/osad-news/667.html

  135. http://www.polyera.com/newsflash/polyera-achieves-world-record-organic-solar-cell-performance

  136. Ago, H., Petritsch, K., Shaffer, M.S.P., Windle, A.H., Friend, R.H.: Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater. 11(15), 1281–1285 (1999)

    Google Scholar 

  137. Kymakis, E., Amaratunga, G.A.J.: Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80(1), 112–114 (2002)

    Google Scholar 

  138. Landi, B.J., Raffaelle, R.P., Castro, S.L., Bailey, S.G.: Single-wall carbon nanotube-polymer solar cells. Prog. Photovolt. Res. Appl. 13(2), 165–172 (2005)

    Google Scholar 

  139. Kazaoui, S., Minami, N., Nalini, B., Kim, Y., Hara, K.: Near-infrared photoconductive and photovoltaic devices using single-wall carbon anotubes in conductive polymer films. J. Appl. Phys. 98(8), 084314 (2005)

    Google Scholar 

  140. Xu, Z., Wu, Y., Hu, B., Ivanov, I.N., Geohegan, D.B.: Carbon nanotube effects on electroluminescence and photovoltaic response in conjugated polymers. Appl. Phys. Lett. 87, 263118 (2005)

    Google Scholar 

  141. Nakayama, K.-I., Asakura, Y., Yokoyama, M.: Photovoltaic device using composite films of polymer and carbon nanotubes cut by acid treatment. Mol. Cryst. Liq. Cryst. 424, 217–224 (2004)

    Google Scholar 

  142. Kymakis, E., Koudoumas, E., Franghiadakis, I., Amaratunga, G.A.J.: Post-fabrication annealing effects in polymer-nanotube photovoltaic cells. J. Phys. D Appl. Phys. 39, 1058–1062 (2006)

    Google Scholar 

  143. Lanzi, M., Paganin, L., Caretti, D.: New photoactive oligo- and Poly-alkylthiophenes. Polymer 49, 4942–4948 (2008)

    Google Scholar 

  144. Holt, J.M., Ferguson, A.J., Kopidakis, N., Larsen, B.A., Bult, J., Rumbles, G., Blackburn, J.L.: Prolonging charge separation in P3HT-SWNT composites using highly enriched semiconducting nanotubes. Nano Lett. 10, 4627–4633 (2010)

    Google Scholar 

  145. Ham, M.-H., Paulus, G.L.C., Lee, C.Y., Song, C., Kalantar-zadeh, K., Choi, W., Han, J.-H., Strano, M.S.: Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. ACS Nano 4, 6251–6259 (2010)

    Google Scholar 

  146. Fuhrer, M.S., Nugard, J., Shih, L., Forero, M., Yoon, Y.G., Mazzoni, M.S., Choi, H.J., Ihm, I., Louie, S.G., Zettl, A., McEuen, P.L.: Crossed nanotube junctions. Science 288, 494–497 (2000)

    Google Scholar 

  147. Arranz-Andre, J., Blau, W.J.: Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. Carbon 46, 2067–2075 (2008)

    Google Scholar 

  148. Kanai, Y., Grossman, J.C.: Role of semiconducting and metallic tubes in P3HT/carbon nanotube photovoltaic heterojunction: density functional theory calculations. Nano Lett. 8, 908–912 (2008)

    Google Scholar 

  149. Schuettfort, T., Nich, A., Nicholas, R.G.: Observation of type II heterojunction in a highly ordered polymer-carbon nanotube nanohybrid structure. Nano Lett. 9, 3871–4948 (2009)

    Google Scholar 

  150. Shaw, P.E., Ruseckas, A., Samuel, I.D.W.: Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 20, 3516–3520 (2008)

    Google Scholar 

  151. Brabec, C.J., Cravino, A., Meisssner, D., Sariciftci, N.S., Fromherz, T., Rispen, M.T., Sanchez, L., Hummelen, J.C.: Origin of the open circuit voltage of plastic solar cells. Adv. Funct. Mater. 11, 374–380 (2001)

    Google Scholar 

  152. Bernardi, M., Giulilianini, M., Grossman, J.C.: Self-assembly and its impact on interface charge transfer in carbon nanotube/P3HT solar cells. ACS Nano 4, 6599–6606 (2010)

    Google Scholar 

  153. Giulianini, M., Waclawik, E., Bell, J.M., Scarselli, M., Castrucci, P., De Crescenzi, M., Motta, N.: Evidence of multiwall carbon nanotube deformation caused bypoly(3-hexylthiophene) adhesion. J. Phys. Chem. C 115(14), 6324–6330 (2011)

    Google Scholar 

  154. Bardeen, J.: Tunneling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961)

    Google Scholar 

  155. Chaudhary, S., Lu, H., Muller, A.M., Bardeen, C.J., Ozkan, M.: Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells. Nano Lett. 7(7), 1973–1979 (2007)

    Google Scholar 

  156. Berson, S., De Bettignies, R., Bailly, S., Guillerez, S., Jousselme, B.: Eloboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv. Funct. Mater. 17(16), 3363–3370 (2007)

    Google Scholar 

  157. Li, C., Chen, Y., Wang, Y., Iqbal, Z., Chhowalla, M., Mitra, S.: A fullerene-single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J. Mater. Chem. 17(23), 2406–2411 (2007)

    Google Scholar 

  158. Kymakis, E., Kornilios, N., Koudoumas, E.: Carbon nanotube doping of P3HT: PCBM photovoltaic devices. J. Phys. D Appl. Phys. 41, 165110 (2008)

    Google Scholar 

  159. Li, C., Chen, Y., Ntim, S.A., Mitra, S.: Fullerene multiwalled carbon nanotube complexes for bulk heterojunction photovoltaic cells. Appl. Phys. Lett. 96, 143303 (2010)

    Google Scholar 

  160. Alley, N.J., Liao, K.-S., Andreoli, E., Dias, S., Dillon, E.P., Orbaek, A.W., Barron, A.R., Byrne, H.J., Curran, S.A.: Effect of carbon nanotube-fullerene hybrid additive on P3HT:PCBM bulk-heterojunction organic photovoltaics. Synth. Met. 162, 95–101 (2012)

    Google Scholar 

  161. Nismy, N.A., Adikaari, A.A.D.T., Silva, S.R.P.: Functionalized multiwall carbon nanotubes incorporated polymer/fullerene hybrid photovoltaics. Appl. Phys. Lett. 97, 033105 (2010)

    Google Scholar 

  162. Lee, J.U., Gipp, P.P., Heller, C.M.: Carbon nanotube p–n junction diodes. Appl. Phys. Lett. 85, 145 (2004)

    Google Scholar 

  163. Kong, J., Dai, H.: Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. J. Phys. Chem. B 105, 2890–2893 (2001)

    Google Scholar 

  164. Li, Y.F., Hatakeyama, R., Shishido, J., Kato, T., Kaneko, T.: Air-stable p–n junction diodes based on single-walled carbon nanotubes encapsulating Fe nanoparticles. Appl. Phys. Lett. 90, 173127-1–173127-3 (2007)

    Google Scholar 

  165. Abdula, D., Shim, M.: Performance and Photovoltaic response of polymer doped carbon nanotube p–n diodes. ACS Nano 2(10), 2154–2159 (2008)

    Google Scholar 

  166. Gabor, N.M., Zhong, Z., Bosnick, K., Park, J., McEuen, P.L.: Extremely efficient multiple electron hole-pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009)

    Google Scholar 

  167. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510-1–510-10 (1961)

    Google Scholar 

  168. Hanna, M.C., Nozik, A.J.: Solar energy conversion of photovoltaic and photoelctrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510-1–074510-8 (2006)

    Google Scholar 

  169. Green, M.A., Emery, K., Hishikawa, Y., Warta, W.: Solar cell efficiency tables (version 37). Prog. Photovolt. 19, 84–92 (2011)

    Google Scholar 

  170. Nair, G., Chang, L.Y., Geyer, S.M., Bawendi, M.G.: Perspective on the prospects of a carrier multiplication nanocrystal solar cell. Nano Lett. 11, 2145–2151 (2011)

    Google Scholar 

  171. McGuire, J.A., Joo, J., Pietryga, J.M., Schaller, R.D., Klimov, V.I.: New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 41, 1810–1819 (2008)

    Google Scholar 

  172. Midgett, A.G., Hillhouse, H.W., Huges, B.K., Nozik, A.J., Beard, M.C.: Flowing versus static conditions for measuring multiple exciton generation in PbSe quantum dots. J. Phys. Chem. C 114, 17486–17500 (2010)

    Google Scholar 

  173. Nozik, A.J., Beard, M.C., Luther, J.M., Law, M., Ellingson, R.J., Johnson, J.C.: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010)

    Google Scholar 

  174. Semonin, O.E., Luther, J.M., Choi, S., Chen, H.-Y., Gao, J., Nozik, A.J., Beard, M.C.: Peak external photocurrent quantum efficiency exceeding 100 % via quantum dot solar cell. Science 334, 1530–1533 (2011)

    Google Scholar 

  175. Perebeinos, V., Avouris, P.: Impact excitation by hot carriers in carbon nanotubes. Phys. Rev. B. 74, 121410 (2006)

    Google Scholar 

  176. Baer, R., Rabani, E.: Can impact excitation explain efficient carrier multiplication in carbon nanotube photodiodes? Nano Lett. 10, 3277–3282 (2010)

    Google Scholar 

  177. Ueda, A., Matsuda, K., Tayagaki, T., Kanemitsu, Y.: Carrier multiplication in carbon nanotubes studied by femto-second pump-probe spectroscopy. Appl. Phys. Lett 92, 233105-1–233105-3 (2008)

    Google Scholar 

  178. Wang, S., Khafizov, M., Tu, X., Zheng, M., Krauss, T.D.: Multiple exciton generation in single-walled carbon nanotubes. Nano Lett. 10, 2381–2386 (2010)

    Google Scholar 

  179. Murray, C.B., Kagan, C.R., Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000)

    Google Scholar 

  180. Nelson, J.: The Physics of Solar Cells. Imperial College Press, London (2003)

    Google Scholar 

  181. Huynh, W.U., Dittmer, J.J., Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002)

    Google Scholar 

  182. Sun, B., Marx, E., Greenham, N.C.: Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett. 3, 961–963 (2003)

    Google Scholar 

  183. Choi, J.J., Luria, J., Hyun, B.R., Bartnik, A.C., Sun, L.F., Lim, Y.F., Marohn, J.A., Wise, F.W., Hanrath, T.: Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett. 10, 1805–1811 (2010)

    Google Scholar 

  184. Barkhouse, D.A.R., Pattantyus-Abraham, A.G., Levina, L., Sargent, E.H.: Thiols passivate recombinant centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano 2, 2356–2362 (2008)

    Google Scholar 

  185. Landi, B.J., Castro, S.L., Ruf, H.J., Evans, C.M., Bailey, S.G., Raffaelle, R.P.: CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Solar Energy Mater. Solar Cells 87, 733–746 (2005)

    Google Scholar 

  186. Cho, N., Choudhury, K., Thapa, R., Sahoo, Y., Ohulchanskyy, T., Cartwright, A., Lee, K., Prasad, P.N.: Efficient photodetection at IR wavelengths by incorporation of PbSe-carbon nanotube conjugates in a polymeric nanocomposite. Adv. Mater. 19, 232–236 (2007)

    Google Scholar 

  187. Shukla, S., Ohulchanskyy, T.Y., Sahoo, Y., Samoc, M., Thapa, R., Cartwright, A.N., Prasad, P.N.: Polymeric nanocomposites involving a physical blend of ir sensitive quantum dots and carbon nanotubes for photodetection. J. Phys. Chem. C 114, 3180–3184 (2010)

    Google Scholar 

  188. Leventis, H.C., King, S.P., Sudlow, A., Hill, M.S., Molloy, K.C., Haque, S.A.: Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett. 10, 1253–1258 (2010)

    Google Scholar 

  189. Wang, D., Baral, J.K., Zhao, H., Gonfa, B.A., Truong, V.-V., Khakani, M.A.E., Izquierdo, R., Ma, D.: Controlled fabrication of PbS quantum-dot/carbon-nanotube nanoarchitecture and its significant contribution to near-infrared photon-to current conversion. Adv. Funct. Mater. 21, 4010–4018 (2011)

    Google Scholar 

  190. Chen, L., Pan, X., Zheng, D., Gao, Y., Jiang, X., Xu, M., Chen, H.: Hybrid solar cells based on P3HT and Si@MWCNT nanocomposite. Nanotechnology 21, 345201-1–345201-9 (2010)

    Google Scholar 

  191. Fushan, L., Son, D.I., Sung Hwan, C., Won Tae, K., Tae Whan, K.: Flexible photovoltaic cells fabricated utilizing ZnO quantum dot/carbon nanotube heterojunctions. Nanotechnology 20(15), 155202-1–155202-4 (2009)

    Google Scholar 

  192. Li, F., Cho, S.H., Son, D.I., Tae Whan, K., Lee, S.-K., Cho, Y.H., Jin, S.: UV photovoltaic cells based on conjugated ZnO quantum dot/multiwalled carbon nanotube heterostructures. Appl. Phys. Lett. 94, 111906-1–111906-3 (2009)

    Google Scholar 

  193. Li, F., Son, D.I., Tae Whan, K., Ryu, E., Kim, S.W., Lee, S.K., Cho, Y.H.: Photovoltaic cells fabricated utilizing core-shell CdSe/ZnSe quantum dot/multiwalled carbon nanotube heterostructures. Appl. Phys. Lett. 95, 061911-1–061911-3 (2009)

    Google Scholar 

  194. Feng, Y., Yun, D., Zhang, X., Feng, W.: Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots bilayer. Appl. Phys. Lett. 96, 093301-1–093301-3 (2010)

    Google Scholar 

  195. Luther, J.M., Law, M., Song, Q., Perkins, C.L., Beard, M.C., Nozik, A.J.: Structural, optical and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-Ethanedithiol. ACS Nano 2, 271–280 (2008)

    Google Scholar 

  196. Wise, F.W.: Lead salt quantum dots: the limit of strong confinement. Acc. Chem. Res. 33, 773–780 (2000)

    Google Scholar 

  197. Somani, P.R., Somani, P.S., Umeno, M.: Application of metal nanoparticles decorated carbon nanotubes in photovoltaics. Appl. Phys. Lett. 93, 033315-1–033315-3 (2008)

    Google Scholar 

  198. Zhan, Z., Liu, C., Zheng, L., Sun, G., Li, B., Zhang, Q.: Photoresponse of multi-walled carbon nanotube-copper sulfide (MWNT-CuS) hybrid nanostructures. Phys. Chem. Chem. Phys. 13, 20471–20475 (2011)

    Google Scholar 

  199. Kalita, G., Adhikari, S., Aryal, H.R., Afre, R., Soga, T., Sharon, M., Koichi, W., Umeno, M.: Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes. J. Phys. D Appl. Phys. 42, 115104 (2009)

    Google Scholar 

  200. Guldi, D.M., Rahman, G.M.A., Sgobba, V., Kotov, N.A., Bonifazi, D., Prato, M.: CNT CdTe versatile donor–acceptor nanohybrids. J. Am. Chem. Soc. 128, 2315–2323 (2006)

    Google Scholar 

  201. Schultz-Drost, C., Sgobba, V., Gerhard, C., Leubner, S., Calderon, R.M.K., Ruland, A., Guldi, D.M.: Innovative inorganic-organic nanohybrid materials: coupling quantum dots to carbon nanotubes. Angew. Chem. Int. Ed. 49, 6425–6429 (2010)

    Google Scholar 

  202. Robel, I., Bunker, B.A., Kamat, P.V.: Single-walled carbon nanotube-CdS nanocomposites as light harvesting assemblies: photoinduced charge transfer interactions. Adv. Mater. 17, 2458–3263 (2005)

    Google Scholar 

  203. Farrow, B., Kamat, P.V.: CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. J. Am. Chem. Soc. 131, 11124–11131 (2009)

    Google Scholar 

  204. Lee, W., Lee, J., Lee, S., Yi, W., Han, S.H., Cho, B.W.: Enhanced charge collection and reduced recombination of CdS/TiO2 quantum-dots sensitized solar cellsin the presence of single-walled carbon nanotubes. Appl. Phys. Lett. 92, 153510-1–153510-3 (2008)

    Google Scholar 

  205. Sheeney-Haj-Ichia, L., Basnar, B., Willner, I.: Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew. Chem. Int. Ed. 44, 78–83 (2005)

    Google Scholar 

  206. Banerjee, S., Wong, S.S.: Synthesis and characterization of carbon nanotube–nanocrystal heterostructures. Nano Lett. 2, 195–200 (2002)

    Google Scholar 

  207. Lu, C., Akey, A., Wang, W., Herman, I.P.: Versatile formation of CdS nanoparticle-single walled carbon nanotube hybrid structures. J. Am. Chem. Soc. 131, 3446–3447 (2009)

    Google Scholar 

  208. Robel, I., Kuno, M., Kamat, P.V.: Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 4136–4137 (2007)

    Google Scholar 

  209. Jeong, S., Garnett, E.C., Wang, S., Yu, Z., Fan, S., Brongersma, M.L., McGehee, M.D., Cui, Y.: Hybrid silicon nanocone-polymer solar cells. Nano Lett. 12, 2971–2976 (2012)

    Google Scholar 

  210. Gowrishankar, V., Scully, S.R., Chan, A.T., McGehee, M.D., Wang, Q., Branz, H.M.: Exciton harvesting, charge transfer, and charge carrier transport in amorphous-silicon nanopillar/polymer hybrid solar cells. J. Appl. Phys. 103, 064511 (2008)

    Google Scholar 

  211. Peng, K.-Q., Wang, X., Wu, X.-L., Lee, S.-T.: Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett. 9, 3704–3709 (2009)

    Google Scholar 

  212. Shiu, S.-C., Chao, J.J., Hung, S.-C., Yeh, C.-L., Lin, C.-F.: Morphology dependence of silicon nanowire/Poly (3,4 ethylenedioxy thiophene): poly(styrenesulfonate) heterojunction solar cells. Chem. Mater. 22, 3108–3113 (2010)

    Google Scholar 

  213. Ozdemir, B., Kulakci, M., Turan, R., Unalan, H.E.: Silicon Nanowire- poly (3,4 ethylenedioxy thiophene)- poly(styrenesulfonate) heterojunction solar cells. Appl. Phys. Lett. 99, 113510 (2011)

    Google Scholar 

  214. Lu, W., Wang, C., Yue, W., Chen, L.: Si/PEDOT: PSS core/shell nanowire arrays for efficient hybrid solar cells. Nanoscale 3, 3631–3634 (2011)

    Google Scholar 

  215. Kalita, G., Adhikari, S., Aryal, H.R., Afre, R., Soga, T., Sharon, M., Koichi, W., Umeno, M.: Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes. J. Phys. D Appl. Phys. 42, 115104 (2009)

    Google Scholar 

  216. He, L., Jiang, C., Rusli, Lai, D., Wang, H.: Highly efficient Si-nanorods/organic hybrid core sheath heterojunction solar cells. Appl. Phys. Lett. 99, 021104 (2011)

    Google Scholar 

  217. Shen, X., Sun, B., Liu, D., Lee, S.-T.: Hybrid heterojunction solar cell based on organic–inorganic silicon nanowire array architecture. J. Am. Chem. Soc. 133, 19408–19415 (2011)

    Google Scholar 

  218. Svrcek, V., Mariotti, D., Shibata, Y., Kondo, M.: A hybrid heterojunction based on fullerenes and surfactant-free, self-assembled, closely packed silicon nanocrystals. J. Phys. D Appl. Phys. 43, 415402 (2010)

    Google Scholar 

  219. Dietmueller, R., Stegner, A.R., Lechner, R., Niesar, S., Pereira, R.N., Brandt, M.S., Ebbers, A., Trocha, M., Wiggers, H., Stutzmann, M.: Light-induced charge transfer in hybrid composites of organic semiconductors and silicon nanocrystals. Appl. Phys. Lett. 94, 113301 (2009)

    Google Scholar 

  220. Liu, C.-Y., Holman, Z.C., Kortshagen, U.R.: Optimization of Si NC/P3HT hybrid solar cells. Adv. Funct. Mater. 20, 2157–2164 (2010)

    Google Scholar 

  221. Chen, L., Pan, X., Zheng, D., Gao, Y., Jiang, X., Xu, M., Chen, H.: Hybrid solar cells based on P3HT and Si@MWCNT nanocomposite. Nanotechnology 21, 345201 (2010)

    Google Scholar 

  222. Eisenhawer, B., Sensfuss, S., Sivakov, V., Pietsch, M., Andrae, G., Falk, F.: Increasing the efficiency of polymer solar cells by silicon nanowires. Nanotechnology 22, 315401 (2011)

    Google Scholar 

  223. Levitsky, I.A., Euler, W.B., Tokranova, N., Xu, B., Castracane, J.: Hybrid solar cells based on porous Si and copper phthalocyanine derivatives. Appl. Phys. Lett. 85, 6245–6247 (2004)

    Google Scholar 

  224. Tokranova, N., Levitsky, I.A., Xu, B., Castracane, J., Euler, W.B.: Hybrid solar cells based on organic material embedded into porous silicon. In: Proceedings of the SPIE: Organic Photonic Materials and Devices VII, San Jose, 2005, pp. 183–190

    Google Scholar 

  225. Prabakaran, R., Fortunato, E., Martins, R., Ferreira, I.: Fabrication and characterization of hybrid solar cells based on copper phthalocyanine/porous silicon. J. Non-Cryst. Solids 354, 2892–2896 (2008)

    Google Scholar 

  226. Nahor, A., Berger, O., Bardavid, Y., Toker, G., Tamar, Y., Reiss, L., Asscher, M., Yitzchaik, S., Sa’ar, A.: Hybrid structures of porous silicon and conjugated polymers for photovoltaic applications Phys. Stat. Sol. C 8, 1908–1912 (2011)

    Google Scholar 

  227. Ong, P.-L., Levitsky, I.A.: Organic/IV, III–V semiconductor hybrid solar cells. Energies 3, 313–334 (2010)

    Google Scholar 

  228. van de Lagemaat, J., Bames, T.M., Rumbles, G., Shaheen, S.E., Coutts, T.J., Weeks, C., Levitsky, I.A., Peltola, J., Glatkowski, P.: Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl. Phys. Lett. 88, 233503 (2006)

    Google Scholar 

  229. Xu, H., Anlage, S.M., Hu, L., Gruner, G.: Microwave shielding of transparent and conducting single-walled carbon nanotube films. Appl. Phys. Lett. 90, 183119 (2007)

    Google Scholar 

  230. Li, Z., Kandel, H.R., Dervishi, E., Saini, V., Xu, Y., Biris, A.R., Lupu, D., Salamo, G.J., Biris, A.S.: Compararive study on different carbon nanotube materials in terms of transparent conductive coatings. Langmuir 24, 2655–2662 (2008)

    Google Scholar 

  231. De, S., Lyons, P.E., Sorel, S., Doherty, E.M., King, P.J., Blau, W.J., Nirmalraj, P.N., Boland, J.J., Scardaci, V., Joimel, J., Coleman, J.N.: Transperent, flexible, and highly conductive thinfilms based on polymer-nanotube composites. ACS Nano 3, 714–720 (2009)

    Google Scholar 

  232. Parekh, B.B., Fanchini, G., Eda, G., Chhowalla, M.: Improved conductivity of transparent single-wall carbon nanotube thin films via stable post deposition functionalization. Appl. Phys. Lett. 90, 121913 (2007)

    Google Scholar 

  233. Wei, J., Jia, Y., Shu, Q., Gu, Z., Wang, K., Zhuang, D., Zhang, G., Wang, Z., Luo, J., Cao, A., Wu, D.: Double-walled carbon nanotube solar cells. Nano Lett. 7, 2317–2321 (2007)

    Google Scholar 

  234. Jia, Y., Li, P., Gui, X., Wei, J., Wang, K., Zhu, H., Wu, D., Zhang, L., Cao, A., Xu, Y.: Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10 % efficiency. Appl. Phys. Lett. 98, 133115 (2011)

    Google Scholar 

  235. Saini, V., Li, Z., Bourdo, S., Kunets, V.P., Trigwell, S., Couraud, A., Rioux, J., Boyer, C., Nteziyaremye, V., Dervishi, E., Biris, A.R., Salamo, G.J., Viswanathan, T., Biris, A.S.: Photovoltaic devices based on high density boron doped single-walled carbon nanotube/n-Si heterojunctions. J. Appl. Phys. 109, 014321 (2011)

    Google Scholar 

  236. Li, Z., Saini, V., Dervishi, E., Kunets, V.P., Zhang, J., Xu, Y., Biris, A.R., Salamo, G.J., Biris, A.S.: Polymer functionalized n-type single wall carbon nanotube photovoltaic devices. Appl. Phys. Lett. 96, 033110 (2010)

    Google Scholar 

  237. Behnam, A., Johnson, J.L., Choi, Y., Ertosun, M.G., Okyay, A.K., Kapur, P., Saraswat, K.C., Ural, A.: Experimental characterization of single-walled carbon nanotube film-Si Schottky contacts using metal-semiconductor-metal structures. Appl. Phys. Lett. 92, 243116 (2008)

    Google Scholar 

  238. Hatakeyama, R., Li, Y.F., Kata, T.Y., Kaneko, T.: Infrared photovoltaic solar cells based on C60 fullerene encapsulated single-walled carbon nanotubes. Appl. Phys. Lett. 97, 013104 (2010)

    Google Scholar 

  239. Wadhwa, P., Seol, G., Petterson, M.K., Guo, J., Rinzler, A.G.: Electrolyte-induced inversion layer Schottky junction solar cells. Nano Lett. 11, 2419–2423 (2011)

    Google Scholar 

  240. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)

    Google Scholar 

  241. Borgne, V.L., Castrucci, P., Gobbo, S.D., Scarselli, M., Crescenzi, M.D., Mohamedi, M., Khakani, M.A.E.: Enhanced photocurrent generation from UV-laser synthesized-single-wall-carbon-nanotubes/n-silicon hybrid planar devices. Appl. Phys. Lett. 97, 193105 (2010)

    Google Scholar 

  242. Tune, D.D., Flavel, B.S., Krupke, R., Shapter, J.G.: Carbon nanotube-silicon solar cells. Adv. Energy Mater. (2012). doi:10.1002/aenm.201200249

    Google Scholar 

  243. Rakitin, A., Papadopoulos, C., Xu, J.M.: Electronic properties of amorphous carbon nanotubes. Phys. Rev. B 61, 5793–5796 (2000)

    Google Scholar 

  244. Tzolov, M.B., Juo, T.-F., Yin, A., Straus, D.A., Xu, J.M.: Carbon nanotube-silicon heterojunction arrays and infrared photocurrent responses. J. Phys. Chem. C 111, 5800–5804 (2007)

    Google Scholar 

  245. Kuo, T.F., Straus, D.A., Tzolov, M., Xu, J.: Carbon nanotube—silicon heterojunction hyperspectral photocurrent response. Mater. Res. Soc. Symp. Proc. 963, 0963–Q22-01 (2007)

    Google Scholar 

  246. Ong, P.-L., Euler, W.B., Levitsky, I.A.: Carbon nanotube-Si diode as a detector of mid-infrared illumination. Appl. Phys. Lett. 96, 033106 (2010)

    Google Scholar 

  247. Liang, C.-W., Roth, S.: Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett. 8, 1809–1812 (2008)

    Google Scholar 

  248. Li, H., Loke, W.K., Zhang, Q., Yoon, S.F.: Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Appl. Phys. Lett. 96, 043501 (2010)

    Google Scholar 

  249. Behnam, A., Johnson, J.L., Choi, Y., Noriega, L., Ertosun, M.G., Wu, Z., Rinzler, A.G., Kapur, P., Saraswat, K.C., Ural, A.: Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film GaAs Schottky contacts. J. Appl. Phys. 103, 114315-1–114315-6 (2008)

    Google Scholar 

  250. Schriver, M., Reganb, W., Loster, M., Zettl, A.: Carbon nanostructure a Si:H photovoltaic cells with high open-circuit voltage fabricated without dopants. Solid State Commun. 150, 561–563 (2010)

    Google Scholar 

  251. Del Gobbo, S., Castrucci, P., Scarselli, M., Camilli, L., De Crescenzi, M., Mariucci, L., Valletta, A., Minotti, A., Fortunato, G.: Carbon nanotube semitransparent electrodes for amorphous silicon based photovoltaic devices. Appl. Phys. Lett. 98, 183113 (2011)

    Google Scholar 

  252. Zhou, H., Colli, A., Ahnood, A., Yang, Y., Rupesinghe, N., Butler, T., Haneef, I., Hiralal, P., Nathan, A., Amaratunga, G.A.J.: Arrays of parallel connected coaxial multiwall-carbon nanotube-amorphous-silicon solar cells. Adv. Mater. 21, 3919–3923 (2009)

    Google Scholar 

  253. Shu, Q., Wei, J., Wang, K., Zhu, H., Li, Z., Jia, Y., Gui, X., Guo, N., Li, X., Ma, C., Wu, D.: Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes. Nano Lett. 9, 4338–4342 (2009)

    Google Scholar 

  254. Shu, Q., Wei, J., Wang, K., Song, S., Guo, N., Jia, Y., Li, Z., Xu, Y., Cao, A., Zhu, H., Wu, D.: Efficient energy conversion of nanotube/nanowire based solar cells. Chem. Commun. 46, 5533–5535 (2010)

    Google Scholar 

  255. Zhang, L., Jia, Y., Wang, S., Li, Z., Ji, C., Wei, J., Zhu, H., Wang, K., Wu, D., Shi, E., Fang, Y., Cao, A.: Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett. 10, 3583–3589 (2010)

    Google Scholar 

  256. Shi, E., Nie, J., Qin, X., Li, Z., Zhang, L., Li, Z., Li, P., Jia, Y., Ji, C., Wei, J., Wang, K., Zhu, H., Wu, D., Li, Y., Fang, Y., Qian, W., Wei, F., Cao, A.: Nanobelt-carbon nanotube cross-junction solar cells. Energy Environ. Sci. 5, 6119–6125 (2012)

    Google Scholar 

  257. Xie, J., Inaba, T., Sugiyama, R., Homma, Y.: Intrinsic diffusion length of excitons in long single-walled carbon nanotubes from photoluminescence spectra. Phys. Rev. B 85, 085434/1–085434/6 (2012)

    Google Scholar 

  258. Liu, T., Xiao, Z.: Exact and closed form solutions for the quantum yield, exciton diffusion length, and lifetime to reveal the universal behaviors of the photoluminescence of defective single walled carbon nanotubes. J. Phys. Chem. C 115, 16920–16927 (2011)

    Google Scholar 

  259. Pei, Q., Yu, G., Zhang, C., Yang, Y., Heeger, A.J.: Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995)

    Google Scholar 

  260. Gu, Q., Wang, Q., Schiff, E.A., Li, Y.M., Malone, C.T.: Hole drift measurements in amorphous silicon-carbon alloys. J. Appl. Phys. 76, 2310/1–2310/6 (1994)

    Google Scholar 

  261. Schiff, E.A., Devlen, R.I., Grahn, H.T., Tauc, J., Guha, S.: Picosecond electron drift mobility measurements in hydrogenated amorphous silicon. Appl. Phys. Lett. 54, 1911/1–1911/3 (1989)

    Google Scholar 

  262. Juska, G., Arlauskas, K., Kocka, J., Hoheisel, M., Chabloz, P.: Hot electrons in amorphous silicon. Phys. Rev. Lett. 75, 2984–2987 (1995)

    Google Scholar 

  263. Minot, M.J.: Single layer, Gradient refractive index antireflection films effective from 0.35 to 2.5 μ. J. Opt. Soc. Am. 66, 515–519 (1976)

    Google Scholar 

  264. Chen, M., Chang, H.-C., Chang, A.S.P., Lin, S.Y., Xi, J.Q., Schubert, E.F.: Design of optical path for a wide-angle gradient-index antireflection coatings. Appl. Opt. 46, 6533–6538 (2007)

    Google Scholar 

  265. Staebler, D.L., Wronski, C.R.: Optically induced conductivity changes in discharge produced hydrogenated amorphous silicon. J. Appl. Phys. 51, 3262/1–3262/7 (1980)

    Google Scholar 

  266. Bustarret, E., Ligeon, M., Ortega, L.: Visible light emission at room temperature from partially oxidized amorphous silicon. Solid State Commun. 83, 461–464 (1992)

    Google Scholar 

  267. Bustarret, E., Ligeon, M., Rosenbauer, M.: Anodized amorphous silicon: present status. Phys. Status Solidi B 190, 111–116 (1995)

    Google Scholar 

  268. Estes, M.J., Hirsch, L.R., Wichart, S., Moddel, G., Williamson, D.L.: Visible photoluminescence from porous a-Si:H and porous a-Si:C:H thin films. J. Appl. Phys. 82, 1832/1–1832/9 (1997)

    Google Scholar 

  269. He, M., Chernov, A.I., Fedotov, P.V., Obraztsova, E.D., Sainio, J., Rikkinen, E., Jiang, H., Zhu, Z., Tian, Y., Kauppinen, E.I., Niemelä, M., Krause, A.O.I.: Predominant(6,5) single walled carbon nanotube growth on a copper-promoted iron catalyst. J. Am. Chem. Soc. 132, 13994–13996 (2010)

    Google Scholar 

  270. Kato, T., Hatakeyama, R.: Direct growth of short single-walled carbon nanotubes with narrow chirality distribution by time-programmed plasma chemical vapor deposition. ACS Nano 4, 7395–7400 (2010)

    Google Scholar 

  271. Vasenkov, A.V.: Modeling nanotube synthesis: the multiscale approach. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, 2nd edn, pp. 281–302. American Scientific Publishers, Valencia (2011)

    Google Scholar 

  272. Razykov, T.M., Ferekides, C.S., Morel, D., Stefanakos, E., Ullal, H.S., Upadhyaya, H.M.: Solar photovoltaic electricity: current status and future prospects. Sol. Energy 85, 1580–1608 (2011)

    Google Scholar 

  273. Rogalski, A.: Infrared Detectors, Electrocomponent Science Monographs. Gordon and Breach Science Publishers, Amsterdam (2000)

    Google Scholar 

  274. Lu, R., Li, Z., Xu, G., Wu, J.Z.: Suspending single wall carbon nanotube thin film infrared bolometers on microchannels. Appl. Phys. Lett. 94, 163110 (2009)

    Google Scholar 

  275. Lu, R., Xu, G., Wu, J.Z.: Effects of thermal annealing on noise property and temperature coefficient of resistance of single-walled carbon nanotube films. Appl. Phys. Lett. 93, 213101 (2008)

    Google Scholar 

  276. Lu, R., Shi, J.J., Javier Baca, F., Wu, J.Z.: High performance multiwall carbon nanotube bolometers. J. Appl. Phys. 108, 084305/1–084305/5 (2010)

    Google Scholar 

  277. Xiao, L., Zhang, Y., Wang, Y., Liu, K., Wang, Z., Li, T., Jiang, Z., Shi, J., Liu, L., Li, Q.Q., Zhao, Y., Feng, Z., Fan, S., Jiang, K.: A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. Nanotechnology 22, 025502 (2011)

    Google Scholar 

  278. Gohier, A., Dhar, A., Gorintin, L., Bondavalli, P., Bonnassieux, Y., Cojocaru, C.S.: All-printed infrared sensor based on multiwalled carbon nanotubes. Appl. Phys. Lett. 98, 063103/1–063103/3 (2011)

    Google Scholar 

  279. Tarasov, M., Svensson, J., Kuzmin, L., Campbell, E.E.B.: Carbon nanotube bolometers. Appl. Phys. Lett. 90, 163503 (2007)

    Google Scholar 

  280. Pradhan, B., Setyowati, K., Liu, H.Y., Waldeck, D.H., Chen, J.: Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett. 8, 1142–1146 (2008)

    Google Scholar 

  281. Pradhan, B., Kohlmeyera, R.R., Setyowatia, K., Owen, H.A., Chen, J.: Advanced carbon nanotube/polymer composite infrared sensors. Carbon 47, 1686–1692 (2009)

    Google Scholar 

  282. Aliev, A.E.: Bolometric detector on the basis of single-wall carbon nanotube/polymer composite. Infrared Phys. Technol. 51, 541–545 (2008)

    Google Scholar 

  283. Gustavo, V.-R., Trevor, J.S., Mariela, B.-S., Vidal, M.A., Hugo, N.-C., Gonzalez, F.J.: High-sensitivity bolometers from self-oriented single-walled carbon nanotube composites. ACS Appl. Mater. Interf. 3, 3200–3204 (2011)

    Google Scholar 

  284. Glamazda, A.Y., Karachevtsev, V.A., Euler, W.B., Levitsky, I.A.: Achieving high mid-IR bolometric responsivity for anisotropic composite materials from carbon nanotubes and polymers. Adv. Funct. Mater. 22, 2177–2186 (2012)

    Google Scholar 

  285. Bang, D., Lee, J., Park, J., Choi, J., Chang, Y.W., Yoo, K.-H., Huh, Y.-M., Haam, S.: Effectively enhanced sensitivity of a polyaniline-carbon nanotube composite thin film bolometric near-infrared sensor. J. Mater. Chem. 22, 3215–3219 (2012)

    Google Scholar 

  286. St-Antoine, B.C., Menard, D., Martel, R.: Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett. 9, 3503–3508 (2009)

    Google Scholar 

  287. Omari, M., Kouklin, N.A.: Photothermovoltaic effect in carbon nanotubes: En route toward junctionless infrared photocells and light sensors. Appl. Phys. Lett. 98, 243113–243116 (2011)

    Google Scholar 

  288. Sheng, P., Sichel, E.K., Gittleman, J.L.: Fluctuation-induced tunneling conduction in carbon-poly(vinyl chloride) composite. Phys. Rev. Lett. 40, 1197–1200 (1978)

    Google Scholar 

  289. Sichel, E.K., Gittleman, J.L., Sheng, P.: Transport properties of the composite material carbon-polyvinylchloride. Phys. Rev. B 18, 5712–5716 (1978)

    Google Scholar 

  290. Zhou, W., Vavro, J., Guthy, C., Winey, K.I., Fischer, J.E., Ericson, L.M., Ramesh, S., Saini, R., Davis, V.A., Kittrel, C., Pasqualli, M., Hauge, R.H., Smalley, R.E.: Single wall carbon nanotube fibers extruded from super-acid suspensions: preferred orientation, electrical, and thermal transport. J. Appl. Phys. 95, 649–655 (2004)

    Google Scholar 

  291. Kim, G.T., Jhang, S.H., Park, J.G., Park, Y.W., Roth, S.: Non-ohmic current-voltage characteristics in single-wall carbon nanotube networks. Synth. Met. 117, 123–126 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Levitsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Levitsky, I.A. (2012). Light Energy Conversion at Carbon Nanotubes - Organic and Inorganic Interfaces: Photovoltaics, Photodetectors and Bolometers. In: Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials. Springer, London. https://doi.org/10.1007/978-1-4471-4826-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4826-5_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4825-8

  • Online ISBN: 978-1-4471-4826-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics