Skip to main content
Log in

Electrochemical characterization of a porous Pt nanoparticle “Nanocube-Mosaic” prepared by a modified polyol method with HCl addition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous and single crystalline platinum (Pt) nanoparticles (NPs) have been successfully synthesized by reduction of H2PtCl6·6H2O and then investigated by optical spectroscopy and transmission electron microscopy. H2PtCl6·6H2O was reduced using ethylene glycol in the presence of polyvinylpyrrolidone under highly acidic conditions (pH < 1) to form single crystalline Pt particles about 5 nm in size. These particles were then stacked via {100} facets, forming 50-nm length porous nanocubes with a mosaic structure. The porous Pt NPs exhibited excellent catalytic properties for methanol oxidation. In particular, the electrochemical surface area was ∼63 m2/g, five times higher than that for non-porous Pt NPs prepared using a conventional method. We suggest that the high catalytic activity of porous Pt NPs is due to a combination of the crystalline structure having exposed {100} facets and a porous morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma, G.; Mei, Y.; Lu, Y.; Ballauff, M.; Irrgang, T.; Proch, S.; Kempe, R. Spherical polyelectrolyte brushes as carriers for platinum nanoparticles in heterogeneous hydrogenation reactions. J. Catal. 2007, 246, 10–14.

    Article  CAS  Google Scholar 

  2. Li, Y.; El-Sayed, M. A. The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J. Phys. Chem. B 2001, 105, 8938–8943.

    Article  CAS  Google Scholar 

  3. Wei, S.; Wu, D.; Shang, X.; Fu, R. Studies on the structure and electrochemical performance of Pt/carbon aerogel catalyst for direct methanol fuel cells. Energy Fuels 2009, 23, 908–911.

    Article  CAS  Google Scholar 

  4. Lim, B.; Lu, X.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043–4047.

    Article  CAS  Google Scholar 

  5. Huang, T.; Jiang, R.; Zhang, D.; Zhuang, J.; Cai, W.; Yu, A. AC impedance investigation of plating potentials on the catalytic activities of Pt nanocatalysts for methanol electrooxidation. J. Solid State Electrochem. 2009, 14, 101–107.

    Article  Google Scholar 

  6. Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 2007, 129, 6974–6975.

    Article  CAS  Google Scholar 

  7. Zhong, X.; Feng, Y.; Lieberwirth, I.; Knoll, W. Facile synthesis of morphology-controlled platinum nanocrystals. Chem. Mater. 2006, 18, 2468–2471.

    Article  CAS  Google Scholar 

  8. Teng, X.; Yang, H. Synthesis of platinum multipods: An induced anisotropic growth. Nano Lett. 2005, 5, 885–891.

    Article  CAS  Google Scholar 

  9. Chen, J.; Herricks, T.; Geissler, M.; Xia, Y. Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J. Am. Chem. Soc. 2004, 126, 10854–10855.

    Article  CAS  Google Scholar 

  10. Song, Y.; Garcia, R. M.; Dorin, R. M.; Wang, H.; Qui, Y.; Shelnutt, J. A. Synthesis of platinum nanocages by using liposomes containing photocatalyst molecules. Angew. Chem. Int. Ed. 2006, 45, 8126–8130.

    Article  CAS  Google Scholar 

  11. Teng, X.; Liang, X.; Maksimuk, S.; Yang, H. Synthesis of porous platinum nanoparticles. Small 2006, 2, 249–253.

    Article  CAS  Google Scholar 

  12. Shin, H. J.; Ryoo, R.; Liu, Z.; Terasaki, O. Template synthesis of asymmetrically mesostructured platinum networks. J. Am. Chem. Soc. 2001, 123, 1246–1247.

    Article  CAS  Google Scholar 

  13. Pasricha, R.; Bala, T.; Viradar, A. V.; Umbarkar, S.; Sastry, M. Synthesis of catalytically active porous platinum nanoparticles by transmetallation reaction and proposition of the mechanism. Small 2009, 5, 1467–1473.

    Article  CAS  Google Scholar 

  14. Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.; Wan, L. J.; Bai, C. L. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed. 2004, 43, 1540–1543.

    Article  CAS  Google Scholar 

  15. Nogami, M.; Koike, R.; Jalem, R.; Kawamura, G.; Yang, Y.; Sasaki, Y. Synthesis of porous single-crystalline platinum nanocubes composed of nanoparticles. J. Phys. Chem. Lett. 2010, 1, 568–571.

    Article  CAS  Google Scholar 

  16. Zheng, J.; Yang, J.; Lee, J. Y.; Zhou, W. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core. J. Phys. Chem. B 2006, 110, 24606–24611.

    Article  Google Scholar 

  17. Peng, Z.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 2009, 131, 7542–7543.

    Article  CAS  Google Scholar 

  18. Skrabalak, S. E.; Wiley, B. J.; Kim, M.; Formo, E. V.; Xia, Y. On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent. Nano Lett. 2008, 8, 2077–2081.

    Article  CAS  Google Scholar 

  19. Grass, M. E.; Yue, Y.; Habas, S. E.; Rioux, R. M.; Teall, C. I.; Yang, P.; Somorjai, G. A. Silver ion mediated shape control of platinum nanoparticles: Removal of silver by selective etching leads to increased catalytic activity. J. Phys. Chem. C 2008, 112, 4797–4804.

    Article  CAS  Google Scholar 

  20. Wiley, B.; Herrickes, T.; Sun, Y.; Xia, Y. Polyol synthesis of silver nanoparticles: Use of chloride to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004, 4, 1733–1739.

    Article  CAS  Google Scholar 

  21. Novo, C.; Mulvaney, P. Charge-induced Rayleigh instabilities in small gold rods. Nano Lett. 2007, 7, 520–524.

    Article  CAS  Google Scholar 

  22. Mendes, D.; Garcia, H.; Silva, V. B.; Mendes, A.; Madeira, L. M. Comparison of nanosized gold-based and copper-based catalysts for the low-temperature water-gas shift reaction. Ind. Eng. Chem. Res. 2009, 48, 430–439.

    Article  CAS  Google Scholar 

  23. Borodko, Y.; Habas, S. E.; Koebel, M.; Yang, P.; Frei, H.; Somorjai, G. A. Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J. Phys. Chem. B 2006, 110, 23052–23059.

    Article  CAS  Google Scholar 

  24. Zhang, H. T.; Ding, J.; Chow, G. M. Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 2008, 24, 375–378.

    Article  CAS  Google Scholar 

  25. Samant, P. V.; Rangel, C. M.; Romero, M. H.; Fernandes, J. B.; Figueiredo, J. L. Carbon supports for methanol oxidation catalyst. J. Power Sources 2005, 151, 79–84.

    Article  CAS  Google Scholar 

  26. Chandrasekaran, K.; Wass, J. C.; Bockris, J. O. M. The potential dependence of intermediates in methanol oxidation observed in the steady state by FTIR spectroscopy. J. Electrochem. Soc. 1990, 137, 518–524.

    Article  CAS  Google Scholar 

  27. Sun, J.; Huang, J.; Cao, Y.; Zhang, X. Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol. Int. J. Electrochem. Sci. 2007, 2, 64–71.

    CAS  Google Scholar 

  28. Lee, E. P.; Peng, Z.; Chen, W.; Chen, S.; Yang, H.; Xia, Y. Electrocatalytic properties of Pt nanowires supported on Pt and W gauzes. ACS Nano 2008, 2, 2167–2173.

    Article  CAS  Google Scholar 

  29. Anderson, M. L.; Stroud, R. M.; Rolison, D. R. Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: Catalyst-modified carbon-silica composite aerogels. Nano Lett. 2002, 2, 235–240.

    Article  CAS  Google Scholar 

  30. Shanmugam, S.; Viswanathan, B.; Varadarajan, T. K. Preparation of noble metal supported carbon electrodes using photochemically reduced heteropolyanions in composite films. J. Mol. Catal. A: Chem. 2005, 241, 52–58.

    Article  CAS  Google Scholar 

  31. Chen, A.; La Russa, D. J.; Miller, B. Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles. Langmuir 2004, 20, 9695–9702.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Nogami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalem, R., Koike, R., Yang, Y. et al. Electrochemical characterization of a porous Pt nanoparticle “Nanocube-Mosaic” prepared by a modified polyol method with HCl addition. Nano Res. 4, 746–758 (2011). https://doi.org/10.1007/s12274-011-0131-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0131-z

Keywords

Navigation