Nano Research

, Volume 3, Issue 6, pp 395–403 | Cite as

Hierarchical silver indium tungsten oxide mesocrystals with morphology-, pressure-, and temperature-dependent luminescence properties

  • Bo Hu
  • Li-Heng Wu
  • Zhi Zhao
  • Meng Zhang
  • Shao-Feng Chen
  • Shu-Juan Liu
  • Hong-Yan Shi
  • Ze-Jun Ding
  • Shu-Hong Yu
Open Access
Research Article

Abstract

Highly hierarchical structures of silver indium tungsten oxide (AgIn(WO4)2) mesocrystals can be rationally fabricated via the microwave-assisted synthesis method by tuning the initial concentrations of the precursors. Photoluminescence spectra of hierarchical AgIn(WO4)2 mesocrystals were measured to investigate the correlation between the morphology, pressure, and temperature and their luminescence properties. The materials showed interesting white emission when excited by visible light of wavelength 460 nm. AgIn(WO4)2 materials having different morphologies displayed notable differences in photogenerated emission performance. The emission was strongly correlated with the surface nanostructures of outgrowths, with larger amounts of outgrowths leading to stronger emission intensities. The pressure- and temperature-dependent photoluminescence properties of these materials have also been investigated under hydrostatic pressures up to 16 GPa at room temperature and in the temperature range from 10 to 300 K.

Keywords

Photoluminescence AgIn(WO4)2 mesocrystal morphology high-pressure temperature 

Supplementary material

12274_2010_1044_MOESM1_ESM.pdf (489 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239.CrossRefGoogle Scholar
  2. [2]
    Li, Y. C.; Ye, M. F.; Yang, C. H.; Li, X. H.; Li, Y. F. Composition- and shape-controlled synthesis and optical properties of ZnxCd1-xS alloyed nanocrystals. Adv. Funct. Mater. 2005, 15, 433–441.CrossRefGoogle Scholar
  3. [3]
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.CrossRefADSGoogle Scholar
  4. [4]
    Kozma, P.; Bajgar, R.; Kozma, P. Radiation damage of PbWO4 crystals due to irradiation by Co-60 gamma rays. Radiat. Phys. Chem. 2002, 65, 127–130.CrossRefADSGoogle Scholar
  5. [5]
    Zhou, Y. X.; Yao, H. B.; Zhang, Q.; Gong, J. Y.; Liu, S. J.; Yu, S. H. Hierarchical FeWO4 microcrystals: Solvothermal synthesis and their photocatalytic and magnetic properties. Inorg. Chem. 2009, 48, 1082–1090.CrossRefPubMedGoogle Scholar
  6. [6]
    Tanaka, K.; Miyajima, T.; Shirai, N.; Zhuang, Q.; Nakata, R. Laser photochemical ablation of CdWO4 studied with the time-of-flight mass-spectrometric technique. J. Appl. Phys. 1995, 77, 6581–6587.CrossRefADSGoogle Scholar
  7. [7]
    Qu, W. M.; Wlodarski, W.; Meyer, J. U. Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4. Sens. Actuat. B 2000, 64, 76–82.CrossRefGoogle Scholar
  8. [8]
    Ehrenberg, H.; Weitzel, H.; Heid, C.; Fuess, H.; Wltschek, G.; Kroener, T.; van Tol, J.; Bonnet, M. Magnetic phase diagrams of MnWO4. J. Phys.: Condens. Matter 1997, 9, 3189–3203.CrossRefADSGoogle Scholar
  9. [9]
    Liu, B.; Yu, S. H.; Li, L. J.; Zhang, Q.; Zhang, F.; Jiang, K. Morphology control of stolzite microcrystals with high hierarchy in solution. Angew. Chem. Int. Edit. 2004, 43, 4745–4750.CrossRefGoogle Scholar
  10. [10]
    Zhang, Q.; Chen, X. Y.; Zhou, Y. X.; Zhang, G. B.; Yu, S. H. Synthesis of ZnWO4@MWO4 (M = Mn, Fe) core-shell nanorods with optical and antiferromagnetic property by oriented attachment mechanism. J. Phys. Chem. C 2007, 111, 3927–3933.CrossRefGoogle Scholar
  11. [11]
    Zhang, Q.; Yao, W. T.; Chen, X. Y.; Zhu, L. W.; Fu, Y. B.; Zhang, G. B.; Sheng, L. S.; Yu, S. H. Nearly monodisperse tungstate MWO4 microspheres (M = Pb, Ca): Surfactant-assisted solution synthesis and optical properties. Cryst. Growth Des. 2007, 7, 1423–1431.CrossRefGoogle Scholar
  12. [12]
    Su, Y. G.; Li, G. S.; Xue, Y. F.; Li, L. P. Tunable physical properties of CaWO4 nanocrystals via particle size control. J. Phys. Chem. C 2007, 111, 6684–6689.CrossRefGoogle Scholar
  13. [13]
    Su, Y. G.; Li, L. P.; Li, G. S. Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+. Chem. Mater. 2008, 20, 6060–6067.CrossRefGoogle Scholar
  14. [14]
    Su, Y. G.; Li, L. P.; Li, G. S. Self-assembly and multicolor emission of core/shell structured CaWO4:Na+/Ln3+ spheres. Chem. Commun. 2008, 4004–4006.Google Scholar
  15. [15]
    Gautam, U. K.; Fang, X. S.; Bando, Y.; Zhan, J. H.; Golberg, D. Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-In nanowire core-shell heterostructures. ACS Nano 2008, 2, 1015–1021.CrossRefPubMedGoogle Scholar
  16. [16]
    Zhai, T. Y.; Fang, X. S.; Bando, Y. S.; Liao, Q.; Xu, X. J.; Zeng, H. B.; Ma, Y.; Yao, J. N.; Golberg, D. Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. ACS Nano 2009, 3, 949–959.CrossRefPubMedGoogle Scholar
  17. [17]
    Li, Y.; Xiang, J.; Qian, F.; Gradecak, S.; Wu, Y.; Yan, H.; Yan, H.; Blom, D. A.; Lieber, C. M. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett. 2006, 6, 1468–1473.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Xu, L.; Su, Y.; Li, S.; Chen, Y. Q.; Zhou, Q. T.; Yin, S.; Feng, Y. Self-assembly and hierarchical organization of Ga2O3/In2O3 nanostructures. J. Phys. Chem. B 2007, 111, 760–766.CrossRefPubMedGoogle Scholar
  19. [19]
    Jung, Y.; Ko, D. K.; Agarwal, R. Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. Nano Lett. 2007, 7, 264–268.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Zhai, T. Y.; Fang, X. S.; Bando, Y.; Dierre, B.; Liu, B. D.; Zeng, H. B.; Xu, X. J.; Huang, Y.; Yuan, X. L.; Sekiguchi, T.; Golberg, D. Characterization, cathodoluminescence, and field-emission properties of morphology-tunable CdS micro/nanostructures. Adv. Funct. Mater. 2009, 19, 2423–2430.CrossRefGoogle Scholar
  21. [21]
    Banerjee, D.; Jo, S. H.; Ren, Z. F. Enhanced field emission of ZnO nanowires. Adv. Mater. 2004, 16, 2028–2032.CrossRefGoogle Scholar
  22. [22]
    Fang, X. S.; Gautam, U. K.; Bando, Y.; Dierre, B.; Sekiguchi, T.; Golberg, D. Multiangular branched ZnS nanostructures with needle-shaped tips: Potential luminescent and field-emitter nanomaterial. J. Phys. Chem. C 2008, 112, 4735–4742.CrossRefGoogle Scholar
  23. [23]
    He, J. H.; Yang, R. S.; Chueh, Y. L.; Chou, L. J.; Chen, L. J.; Wang, Z. L. Aligned AlN nanorods with multi-tipped surfaces: Growth, field-emission, and cathodoluminescence properties. Adv. Mater. 2006, 18, 650–654.CrossRefGoogle Scholar
  24. [24]
    Yang, R. S.; Chueh, Y. L.; Morber, J. R.; Snyder, R.; Chou, L. J.; Wang, Z. L. Single-crystalline branched zinc phosphide nanostructures: Synthesis, properties, and optoelectronic devices. Nano Lett. 2007, 7, 269–275.CrossRefPubMedADSGoogle Scholar
  25. [25]
    El-Sayed, M. A. Small is different: Shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 2004, 37, 326–333.CrossRefPubMedGoogle Scholar
  26. [26]
    Sun, Y. J.; Chen, Y.; Tian, L. J.; Yu, Y.; Kong, X. G.; Zhao, J. W.; Zhang, H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals. Nanotechnology 2007, 18, 275609.CrossRefADSGoogle Scholar
  27. [27]
    Sun, Y. J.; Chen, Y.; Tian, L. J.; Yu, Y.; Kong, X. G.; Zeng, Q. H.; Zhang, Y. L.; Zhang, H. Morphology-dependent upconversion luminescence of ZnO:Er3+ nanocrystals. J. Lumin. 2008, 128, 15–21.CrossRefGoogle Scholar
  28. [28]
    Das, K.; Sharma, S. N.; Kumar, M.; De, S. K. Morphology dependent luminescence properties of Co doped TiO2 nanostructures. J. Phys. Chem. C 2009, 113, 14783–14792.CrossRefGoogle Scholar
  29. [29]
    Shen, J. M.; Li, J. Y.; Chen, Y.; Huang, Z. Construction of unconventional hexapod-like tellurium nanostructure with morphology-dependent photoluminescence property. J. Phys. Chem. C 2009, 113, 9502–9508.CrossRefGoogle Scholar
  30. [30]
    Kan, S. H.; Mokari, T.; Rothenberg, E.; Banin, U. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat. Mater. 2003, 2, 155–158.CrossRefPubMedADSGoogle Scholar
  31. [31]
    Zhai, T. Y.; Fang, X. S.; Bando, Y. S.; Liao, Q.; Xu, X. J.; Zeng, H. B.; Ma, Y.; Yao, J. N.; Golberg, D. Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. ACS Nano 2009, 3, 949–959.CrossRefPubMedGoogle Scholar
  32. [32]
    Hu, B.; Wu, L. H.; Liu, S. J.; Yao, H. B.; Shi, H. Y.; Li, G. P.; Yu, S. H. Microwave-assisted synthesis of a new silver indium tungsten oxide mesocrystal: Selective photocatalytic properties. Chem. Commun. 2010, 2277–2279.Google Scholar
  33. [33]
    Barnett, J. D.; Block, S.; Piermarini, G. J. An optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell. Rev. Sci. Instrum. 1973, 44, 1–9.CrossRefADSGoogle Scholar
  34. [34]
    Yu, S. H.; Liu, B.; Mo, M. S.; Huang, J. H.; Liu, X. M.; Qian, Y. T. General synthesis of single-crystal tungstate nanorods/nanowires: A facile, low-temperature solution approach. Adv. Funct. Mater. 2003, 13, 639–647.CrossRefGoogle Scholar
  35. [35]
    Song, S. Y.; Zhang, Y.; Xing, Y.; Wang, C.; Feng, J.; Shi, W. D.; Zheng, G. L.; Zhang, H. J. Rectangular AgIn(WO4)2 nanotubes: A promising photoelectric material. Adv. Funct. Mater. 2008, 18, 2328–2334.CrossRefGoogle Scholar
  36. [36]
    Ovechkin, A. E.; Ryzhikov, V. D.; Tamulaitis, G.; Zukauskas, A. Luminescence of ZnWO4 and CdWO4 Crystals. Phys. Status Solidi A 1987, 103, 285–290.CrossRefADSGoogle Scholar
  37. [37]
    Polak, K.; Nikl, M.; Nitsch, K.; Kobayashi, M.; Ishii, M.; Usuki, Y.; Jarolimek, O. The blue luminescence of PbWO4 single crystals. J. Lumin. 1997, 72-74, 781–783.CrossRefGoogle Scholar
  38. [38]
    Blasse, G. Classical phosphors: A Pandora’s box. J. Lumin. 1997, 72-74, 129–134.CrossRefGoogle Scholar
  39. [39]
    Nikl, M. Wide band gap scintillation materials: Progress in the technology and material understanding. Phys. Status Solidi. A 2000, 178, 595–620.CrossRefADSGoogle Scholar
  40. [40]
    Tang, J. W.; Zou, Z. G.; Ye, J. H. Photophysical and photocatalytic properties of AgInW2O8. J. Phys. Chem. B 2003, 107, 14265–14269.CrossRefGoogle Scholar
  41. [41]
    Sun, Y. J.; Chen, Y.; Tian, L. J.; Yu, Y.; Kong, X. G.; Zeng, Q. H.; Zhang, Y. L.; Zhang, H. Morphology-dependent upconversion luminescence of ZnO:Er3+ nanocrystals. J. Lumin. 2008, 128, 15–21.CrossRefGoogle Scholar
  42. [42]
    van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J. Phys. Chem. B 2000, 104, 1715–1723.CrossRefGoogle Scholar
  43. [43]
    van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J. Lumin. 2000, 90, 123–128.CrossRefGoogle Scholar
  44. [44]
    van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. The luminescence of nanocrystalline ZnO particles: The mechanism of the ultraviolet and visible emission. J. Lumin. 2000, 87-89, 454–456.CrossRefGoogle Scholar
  45. [45]
    Su, F. H.; Fang, Z. L.; Ma, B. S.; Ding, K.; Li, G. H.; Xu, S. J. Temperature and pressure behavior of the emission bands from Mn-, Cu-, and Eu-doped ZnS nanocrystals. J. Appl. Phys. 2004, 95, 3344–3349.CrossRefADSGoogle Scholar
  46. [46]
    Paszkowicz, W.; Szuszkiewicz, W.; Dynowska, E.; Domagala, J. Z.; Firszt, F.; Meczynska, H.; Legowski, S.; Lathe, C. High-pressure structural and optical properties of wurtzite-type Zn1-xMgxSe. J. Alloy. Compd. 2004, 371, 168–171.CrossRefGoogle Scholar
  47. [47]
    Tang, X. D.; Ding, Z. J.; Zhang, Z. M. Photoluminescence study of Nd:YVO4 under high pressure. J. Lumin. 2007, 122-123, 66–69.CrossRefGoogle Scholar
  48. [48]
    Shan, W.; Walukiewicz, W.; Ager, J. W.; Yu, K. M.; Yuan, H. B.; Xin, H. P.; Cantwell, G.; Song, J. J. Nature of room-temperature photoluminescence in ZnO. Appl. Phys. Lett. 2005, 86, 191911.CrossRefADSGoogle Scholar
  49. [49]
    Wang, H.; Medina, F. D.; Liu, D. D.; Zhou, Y. D. The line-shape and zero-phonon line of the luminescence spectrum from zinc tungstate single-crystals. J. Phys.: Condens. Mat. 1994, 6, 5373–5386.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bo Hu
    • 1
  • Li-Heng Wu
    • 1
  • Zhi Zhao
    • 2
  • Meng Zhang
    • 1
  • Shao-Feng Chen
    • 1
  • Shu-Juan Liu
    • 1
  • Hong-Yan Shi
    • 1
  • Ze-Jun Ding
    • 3
  • Shu-Hong Yu
    • 1
  1. 1.Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Department of Materials Science and Engineering, the National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Division of Instruments Center for Physical Science, Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of Physics, Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations