Skip to main content
Log in

Surface-dependent properties of α-Ag2WO4: a joint experimental and theoretical investigation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Alpha-silver tungstate (α-Ag2WO4) has attracted much attention in recent years due to its unique crystal and electronic structures, which are suitable for a wide range of applications. This work presents a more realistic study, based on first-principles calculations and experimental results, of the potential of α-Ag2WO4 for antibacterial and photocatalytic activity. α-Ag2WO4 material has been successfully synthesized by a coprecipitation method and subjected to microwave irradiation for different times. The as-synthesized microcrystals were structurally characterized by X-ray diffraction, while the morphological aspects were investigated by field emission scanning electron microscopy. The experimental studies and theoretical simulations of α-Ag2WO4, based on density functional theory calculations, have highlighted several key parameters (surface dependent) that determine the antibacterial (against Staphylococcus aureus) and photocatalytic activity (for the degradation of rhodamine B) and provided some general principles for material design. We believe that our results offer new insights regarding the local coordination of superficial Ag and W atoms (i.e. clusters) on each exposed surface of the corresponding morphology, that dictate the antibacterial and photocatalytic activities of α-Ag2WO4, a field that has so far remained unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

DFT:

Density functional theory

FE-SEM:

Field emission scanning electron microscopy

XRD:

X-ray diffraction

PL:

Photoluminescence

RhB:

Rhodamine B

CP:

Coprecipitation

UV–Vis:

Ultraviolet–Visible

MR:

Micro-Raman

BET:

Brunauer–Emmett–Teller

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

ICSD:

Inorganic crystal structure database

FWHM:

Full width at half maximum

VB:

Valence band

CB:

Conduction band

CFU:

Colony forming unit

References

  1. Tang J, Ye J (2005) Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides. J Mater Chem 15:4246–4251. https://doi.org/10.1039/B504818D

    Article  CAS  Google Scholar 

  2. da Silva LF, Catto AC, Avansi W et al (2016) Acetone gas sensor based on α-Ag2WO4 nanorods obtained via a microwave-assisted hydrothermal route. J Alloys Compd 683:186–190. https://doi.org/10.1016/j.jallcom.2016.05.078

    Article  CAS  Google Scholar 

  3. Longo VM, De Foggi CC, Ferrer MM et al (2014) Potentiated electron transference in α-Ag2WO4 microcrystals with Ag nanofilaments as microbial agent. J Phys Chem A 118:5769–5778. https://doi.org/10.1021/jp410564p

    Article  CAS  PubMed  Google Scholar 

  4. Longo E, Volanti DP, Longo VM et al (2014) Toward an understanding of the growth of Ag filaments on α-Ag2WO4 and their photoluminescent properties: a combined experimental and theoretical study. J Phys Chem C 118:1229–1239. https://doi.org/10.1021/jp408167v

    Article  CAS  Google Scholar 

  5. Foggi CC, Fabbro MT, Santos LPS et al (2017) Synthesis and evaluation of α-Ag2WO4 as novel antifungal agent. Chem Phys Lett 674:125–129. https://doi.org/10.1016/j.cplett.2017.02.067

    Article  CAS  Google Scholar 

  6. Wang B-Y, Zhang G-Y, Cui G-W et al (2019) Controllable fabrication of α-Ag2WO4 nanorod-clusters with superior simulated sunlight photocatalytic performance. Inorg Chem Front 6:209–219. https://doi.org/10.1039/C8QI01025K

    Article  CAS  Google Scholar 

  7. Liu X, Hu J, Li J et al (2013) Facile synthesis of Ag2WO4/AgCl nanorods for excellent photocatalytic properties. Mater Lett 91:129–132. https://doi.org/10.1016/j.matlet.2012.09.078

    Article  CAS  Google Scholar 

  8. Sreedevi A, Priyanka KP, Babitha KK et al (2015) Chemical synthesis, structural characterization and optical properties of nanophase α-Ag2WO4. Indian J Phys 89:889–897. https://doi.org/10.1007/s12648-015-0664-1

    Article  CAS  Google Scholar 

  9. De Santana YVB, Gomes JEC, Matos L et al (2014) Silver molybdate and silver tungstate nanocomposites with enhanced photoluminescence. Nanomater Nanotechnol 4:22. https://doi.org/10.5772/58923

    Article  CAS  Google Scholar 

  10. Liang C, Guo H, Zhang L et al (2019) Boosting molecular oxygen activation ability in self-assembled plasmonic pn semiconductor photocatalytic heterojunction of WO3/Ag@ Ag2O. Chem Eng J 372:12–25

    Article  CAS  Google Scholar 

  11. Guo C-X, Yu B, Xie J-N, He L-N (2015) Silver tungstate: a single-component bifunctional catalyst for carboxylation of terminal alkynes with CO2 in ambient conditions. Green Chem 17:474–479. https://doi.org/10.1039/C4GC01638F

    Article  CAS  Google Scholar 

  12. Santos CJ, Moura Filho F, Campos FL et al (2020) Ag2WO4 nanoparticles radiolabeled with technetium-99m: a potential new tool for tumor identification and uptake. J Radioanal Nucl Chem 323:51–59

    Article  CAS  Google Scholar 

  13. Roca RA, Sczancoski JC, Nogueira IC et al (2015) Facet-dependent photocatalytic and antibacterial properties of α-Ag2WO4 crystals: combining experimental data and theoretical insights. Catal Sci Technol 5:4091–4107. https://doi.org/10.1039/C5CY00331H

    Article  CAS  Google Scholar 

  14. da Silva LF, Catto AC, Avansi W et al (2014) A novel ozone gas sensor based on one-dimensional (1D) α-Ag2WO4 nanostructures. Nanoscale 6:4058–4062. https://doi.org/10.1039/C3NR05837A

    Article  PubMed  Google Scholar 

  15. Chen H, Xu Y (2014) Photoactivity and stability of Ag2WO4 for organic degradation in aqueous suspensions. Appl Surf Sci 319:319–323. https://doi.org/10.1016/j.apsusc.2014.05.115

    Article  CAS  Google Scholar 

  16. Lin Z, Li J, Zheng Z et al (2015) Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis. ACS Nano 9:7256–7265. https://doi.org/10.1021/acsnano.5b02077

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Fu C, Wang P et al (2013) Hierarchically porous metastable β-Ag2WO4 hollow nanospheres: controlled synthesis and high photocatalytic activity. Nanotechnology 24:165602. https://doi.org/10.1088/0957-4484/24/16/165602

    Article  CAS  PubMed  Google Scholar 

  18. Xu D, Cheng B, Zhang J et al (2015) Photocatalytic activity of Ag2MO4 (M = Cr, Mo, W) photocatalysts. J Mater Chem A 3:20153–20166. https://doi.org/10.1039/C5TA05248C

    Article  CAS  Google Scholar 

  19. Golubović A, Šćepanović M, Kremenović A et al (2008) Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J Sol Gel Sci Technol 49:311. https://doi.org/10.1007/s10971-008-1872-3

    Article  CAS  Google Scholar 

  20. Sreedevi A, Priyanka KP, Vattappalam SC, Varghese T (2018) Silver tungstate nanoparticles for the detection of ethanol, ammonia and acetone gases. J Electron Mater 47:6328–6333. https://doi.org/10.1007/s11664-018-6551-8

    Article  CAS  Google Scholar 

  21. Macedo NG, Gouveia AF, Roca RA et al (2018) Surfactant-mediated morphology and photocatalytic activity of α-Ag2WO4 material. J Phys Chem C 122:8667–8679. https://doi.org/10.1021/acs.jpcc.8b01898

    Article  CAS  Google Scholar 

  22. Dutta DP, Singh A, Ballal A, Tyagi AK (2014) High adsorption capacity for cationic dye removal and antibacterial properties of sonochemically synthesized Ag2WO4 nanorods. Eur J Inorg Chem 2014:5724–5732. https://doi.org/10.1002/ejic.201402612

    Article  CAS  Google Scholar 

  23. Sofi FA, Majid K (2019) Plasmon induced interfacial charge transfer across Zr-based metal-organic framework coupled Ag2WO4 heterojunction functionalized by AgNPs: efficient visible light photocatalyst. Chem Phys Lett 720:7–14. https://doi.org/10.1016/j.cplett.2019.02.005

    Article  CAS  Google Scholar 

  24. Pan L, Li L, Chen Y (2013) Synthesis and electrocatalytic properties of microsized Ag2WO4 and nanoscaled MWO4 (M = Co, Mn). J Sol Gel Sci Technol 66:330–336. https://doi.org/10.1007/s10971-013-3014-9

    Article  CAS  Google Scholar 

  25. Nobre FX, Bastos IS, dos Santos Fontenelle RO et al (2019) Antimicrobial properties of α-Ag2WO4 rod-like microcrystals synthesized by sonochemistry and sonochemistry followed by hydrothermal conventional method. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2019.104620

    Article  PubMed  Google Scholar 

  26. Cheng L, Shao Q, Shao M et al (2009) Photoswitches of one-dimensional Ag2MO4 (M = Cr, Mo, and W). J Phys Chem C 113:1764–1768. https://doi.org/10.1021/jp808907e

    Article  CAS  Google Scholar 

  27. Cavalcante LS, Almeida MAP, Avansi W et al (2012) Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorg Chem 51:10675–10687. https://doi.org/10.1021/ic300948n

    Article  CAS  PubMed  Google Scholar 

  28. Andrés J, Gracia L, Gonzalez-Navarrete P et al (2014) Structural and electronic analysis of the atomic scale nucleation of Ag on α-Ag2WO4 induced by electron irradiation. Sci Rep 4:5391

    Article  Google Scholar 

  29. Longo E, Cavalcante LS, Volanti DP et al (2013) Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals. Sci Rep 3:1676

    Article  CAS  Google Scholar 

  30. de Foggi CC, de Oliveira RC, Fabbro MT et al (2017) Tuning the morphological, optical, and antimicrobial properties of α-Ag2WO4 microcrystals using different solvents. Cryst Growth Des 17:6239–6246. https://doi.org/10.1021/acs.cgd.7b00786

    Article  CAS  Google Scholar 

  31. Beg MA, Jain A (1992) Kinetics and mechanism of reactions of silver tungstate with mercuric bromoiodide and mercuric chlorobromide in the solid state. Polyhedron 11:2775–2780. https://doi.org/10.1016/S0277-5387(00)83635-9

    Article  CAS  Google Scholar 

  32. Pereira PFS, Nogueira IC, Longo E et al (2015) Rietveld refinement and optical properties of SrWO4: Eu3+ powders prepared by the non-hydrolytic sol-gel method. J Rare Earths 33:113–128

    Article  CAS  Google Scholar 

  33. Yu S-H, Liu B, Mo M-S et al (2003) General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv Funct Mater 13:639–647. https://doi.org/10.1002/adfm.200304373

    Article  CAS  Google Scholar 

  34. Cui X, Yu S-H, Li L et al (2004) Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process. Chem A Eur J 10:218–223. https://doi.org/10.1002/chem.200305429

    Article  CAS  Google Scholar 

  35. Ondruschka B, Bonrath W, Stuerga D (2012) In microwaves in organic synthesis, Vol. 1; de la Hoz, A.; Loupy, A., Eds. Wiley, New York

    Google Scholar 

  36. Kappe CO (2013) How to measure reaction temperature in microwave-heated transformations. Chem Soc Rev 42:4977–4990. https://doi.org/10.1039/C3CS00010A

    Article  CAS  PubMed  Google Scholar 

  37. Kappe CO, Pieber B, Dallinger D (2013) Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed 52:1088–1094. https://doi.org/10.1002/anie.201204103

    Article  CAS  Google Scholar 

  38. Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12:743–754. https://doi.org/10.1039/B921171C

    Article  CAS  Google Scholar 

  39. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374. https://doi.org/10.1039/B9NR00377K

    Article  CAS  PubMed  Google Scholar 

  40. Macario LR, Moreira ML, Andrés J, Longo E (2010) An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions. CrystEngComm 12:3612–3619. https://doi.org/10.1039/C004034G

    Article  CAS  Google Scholar 

  41. Pereira PFS, Gouveia AF, Assis M et al (2018) ZnWO4 nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Phys Chem Chem Phys 20:1923–1937. https://doi.org/10.1039/C7CP07354B

    Article  CAS  PubMed  Google Scholar 

  42. Ebadi M, Mat-Teridi MA, Sulaiman MY et al (2015) Electrodeposited p-type Co3O4 with high photoelectrochemical performance in aqueous medium. RSC Adv 5:36820–36827. https://doi.org/10.1039/C5RA04008F

    Article  CAS  Google Scholar 

  43. Andrés J, Gracia L, Gouveia AF et al (2015) Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations. Nanotechnology 26:405703. https://doi.org/10.1088/0957-4484/26/40/405703

    Article  CAS  PubMed  Google Scholar 

  44. Fabbro MT, Saliby C, Rios LR et al (2015) Identifying and rationalizing the morphological, structural, and optical properties of β-Ag2MoO4 microcrystals, and the formation process of Ag nanoparticles on their surfaces: combining experimental data and first-principles calculations. Sci Technol Adv Mater 16:65002. https://doi.org/10.1088/1468-6996/16/6/065002

    Article  CAS  Google Scholar 

  45. Bomio MRD, Tranquilin RL, Motta FV et al (2013) Toward understanding the photocatalytic activity of PbMoO4 powders with predominant (111), (100), (011), and (110) facets. A combined experimental and theoretical study. J Phys Chem C 117:21382–21395. https://doi.org/10.1021/jp407416h

    Article  CAS  Google Scholar 

  46. Lu JJ, Ulrich J (2005) The influence of supersaturation on crystal morphology—experimental and theoretical study. Cryst Res Technol 40:839–846. https://doi.org/10.1002/crat.200410443

    Article  CAS  Google Scholar 

  47. Longo VM, Gracia L, Stroppa DG et al (2011) A joint experimental and theoretical study on the nanomorphology of CaWO4 crystals. J Phys Chem C 115:20113–20119. https://doi.org/10.1021/jp205764s

    Article  CAS  Google Scholar 

  48. Botelho G, Andres J, Gracia L et al (2016) Photoluminescence and photocatalytic properties of Ag3PO4 microcrystals: an experimental and theoretical investigation. ChemPlusChem 81:202–212. https://doi.org/10.1002/cplu.201500485

    Article  CAS  PubMed  Google Scholar 

  49. Oliveira MC, Gracia L, Nogueira IC et al (2016) Synthesis and morphological transformation of BaWO4 crystals: experimental and theoretical insights. Ceram Int 42:10913–10921. https://doi.org/10.1016/j.ceramint.2016.03.225

    Article  CAS  Google Scholar 

  50. Silva GS, Gracia L, Fabbro MT et al (2016) Theoretical and experimental insight on Ag2CrO4 microcrystals: synthesis, characterization, and photoluminescence properties. Inorg Chem 55:8961–8970. https://doi.org/10.1021/acs.inorgchem.6b01452

    Article  CAS  PubMed  Google Scholar 

  51. Gouveia AF, Ferrer MM, Sambrano JR et al (2016) Modeling the atomic-scale structure, stability, and morphological transformations in the tetragonal phase of LaVO4. Chem Phys Lett 660:87–92. https://doi.org/10.1016/j.cplett.2016.08.013

    Article  CAS  Google Scholar 

  52. Gao Z, Sun W, Hu Y (2014) Mineral cleavage nature and surface energy: anisotropic surface broken bonds consideration. Trans Nonferr Met Soc China 24:2930–2937. https://doi.org/10.1016/S1003-6326(14)63428-2

    Article  CAS  Google Scholar 

  53. Gao H, Zheng C, Yang H et al (2019) Construction of a CQDs/Ag3PO4/BiPO4 heterostructure photocatalyst with enhanced photocatalytic degradation of rhodamine B under simulated solar irradiation. Micromachines 10:557

    Article  Google Scholar 

  54. Ferrer MM, Gouveia AF, Gracia L et al (2016) A 3D platform for the morphology modulation of materials: first principles calculations on the thermodynamic stability and surface structure of metal oxides: Co3O4, α-Fe2O3, and In2O3. Model Simul Mater Sci Eng 24:25007. https://doi.org/10.1088/0965-0393/24/2/025007

    Article  CAS  Google Scholar 

  55. N Standards (2007) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, CLSI document M7–A7. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  56. Machado TR, Macedo NG, Assis M et al (2018) From complex inorganic oxides to Ag–Bi nanoalloy: synthesis by femtosecond laser irradiation. ACS Omega 3:9880–9887

    Article  CAS  Google Scholar 

  57. Kröger FA, Vink HJ (1956) Relations between the concentrations of imperfections in crystalline solids. In: Seitz F (ed) Turnbull DBT-SSP. Academic Press, New York, pp 307–435

    Google Scholar 

  58. Gouveia AF, Assis M, Cavalcante LS et al (2018) Reading at exposed surfaces: theoretical insights into photocatalytic activity of ZnWO4. Front Res Today. https://doi.org/10.31716/frt.201801005

    Article  Google Scholar 

  59. Assis M, Cordoncillo E, Torres-Mendieta R et al (2018) Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Sci Rep 8:1884. https://doi.org/10.1038/s41598-018-19270-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Macedo NG, Machado TR, Roca RA et al (2019) Tailoring the bactericidal activity of Ag nanoparticles/α-Ag2WO4 composite induced by electron beam and femtosecond laser irradiation: integration of experiment and computational modeling. ACS Appl Biol Mater 2:824–837

    Article  CAS  Google Scholar 

  61. Wang QP, Guo XX, Wu WH, Liu SX (2011) Preparation of fine Ag2WO4 antibacterial powders and its application in the sanitary ceramics. Advanced materials research. Trans Tech Publications, Zurich, pp 1321–1325

    Google Scholar 

  62. Moura JVB, Freitas TS, Cruz RP et al (2017) β-Ag2MoO4 microcrystals: characterization, antibacterial properties and modulation analysis of antibiotic activity. Biomed Pharmacother 86:242–247

    Article  CAS  Google Scholar 

  63. Long R, Huang H, Li Y et al (2015) Palladium-based nanomaterials: a platform to produce reactive oxygen species for catalyzing oxidation reactions. Adv Mater 27:7025–7042

    Article  CAS  Google Scholar 

  64. Akter M, Sikder MT, Rahman MM et al (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  CAS  Google Scholar 

  65. Gold K, Slay B, Knackstedt M, Gaharwar AK (2018) Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv Ther 1:1700033

    Article  Google Scholar 

  66. Gouveia AF, Sczancoski JC, Ferrer MM et al (2014) Experimental and theoretical investigations of electronic structure and photoluminescence properties of β-Ag2MoO4 microcrystals. Inorg Chem 53:5589–5599. https://doi.org/10.1021/ic500335x

    Article  CAS  PubMed  Google Scholar 

  67. Zhang C, Zhang H, Zhang K et al (2014) Photocatalytic activity of ZnWO4: band structure, morphology and surface modification. ACS Appl Mater Interfaces 6:14423–14432. https://doi.org/10.1021/am503696b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported financially by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2013/07296-2, 2014/14171-4, 2017/13008-0, 2017/12594-3), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 150949/2018-9). J.A. acknowledges Universitat Jaume I for project, UJI-B2019-30, and Ministerio de Ciencia, Innovación y Universidades (Spain) project PGC2018-094417-B-I00 for supporting this research financially. We also wish to thank the Servei d’Informática, Universitat Jaume I, for their generous allocation of computer time. The valuable help of Lourdes Gracias from the UJI for the help in making calculations on the electronic structure and Enio Longo in improving the final versions of the figures is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Andrés.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

"Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado. Web title: "Prof. Fernando R. Ornellas Festschrift".

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laier, L.O., Assis, M., Foggi, C.C. et al. Surface-dependent properties of α-Ag2WO4: a joint experimental and theoretical investigation. Theor Chem Acc 139, 108 (2020). https://doi.org/10.1007/s00214-020-02613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02613-z

Keywords

Navigation