Nano Research

, Volume 3, Issue 5, pp 363–368 | Cite as

Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation

  • Linhua Hu
  • Keqiang Sun
  • Qing Peng
  • Boqing Xu
  • Yadong Li
Open Access
Research Article


CO oxidation has been performed on Co3O4 nanobelts and nanocubes as model catalysts. The Co3O4 nanobelts which have a predominance of exposed {011} planes are more active than Co3O4 nanocubes with exposed {001} planes. Temperature programmed reduction of CO shows that Co3O4 nanobelts have stronger reducing properties than Co3O4 nanocubes. The essence of shape and crystal plane effect is revealed by the fact that turnover frequency of Co3+ sites of {011} planes on Co3O4 nanobelts is far higher than that of {001} planes on Co3O4 nanocubes.


CO oxidation Co3O4 surface active sites turnover frequency model catalyst 

Supplementary material

12274_2010_1040_MOESM1_ESM.pdf (357 kb)
Supplementary material, approximately 356 KB.


  1. [1]
    Haruta, M.; Kobayashi, T.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405–408.CrossRefGoogle Scholar
  2. [2]
    Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212.CrossRefGoogle Scholar
  4. [4]
    Si, R.; Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 2008, 47, 2884–2887.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.CrossRefGoogle Scholar
  7. [7]
    Huang, X. S.; Sun, H.; Wang, L. C.; Liu, Y. M.; Fan, K. N.; Cao, Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. B 2009, 90, 224–232.CrossRefGoogle Scholar
  8. [8]
    Jansson, J.; Palmqvist, A. E. C.; Fridell, E.; Skoglundh, M.; Österlund, L.; Thormahlen, P.; Langer, V. On the catalytic activity of Co3O4 in low-temperature CO oxidation. J. Catal. 2002, 211, 387–397.Google Scholar
  9. [9]
    Luo, J. Y.; Meng, M.; Li, X.; Li, X. G.; Zha, Y. Q.; Hu, T. D.; Xie, Y. N.; Zhang, J. Mesoporous Co3O4-CeO2 and Pd/Co3O4-CeO2 catalysts: Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. J. Catal. 2008, 254, 310–324.CrossRefGoogle Scholar
  10. [10]
    Tuysuz, H.; Comotti, M.; Schuth, F. Ordered mesoporous Co3O4 as highly active catalyst for low temperature COoxidation. Chem. Commun. 2008, 4022–4024.Google Scholar
  11. [11]
    Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.CrossRefPubMedGoogle Scholar
  12. [12]
    Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature, 2009, 458, 746–749.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Petitto, S. C.; Marsh, E. M.; Carson, G. A.; Langell, M. A. C. Cobalt oxide surface chemistry: The interaction of CoO(1 0 0), Co3O4(1 1 0) and Co3O4(1 1 1) with oxygen and water. J. Mol. Catal. A 2008, 281, 49–58.CrossRefGoogle Scholar
  14. [14]
    Yu, Y. B.; Takei, T.; Ohashi, H.; He, H.; Zhang, X. L.; Haruta, M. Pretreatments of Co3O4 atmoderate temperature for CO oxidation at ?80 °C. J. Catal. 2009, 267, 121–128.CrossRefGoogle Scholar
  15. [15]
    Liotta, L. F.; Carlo, G. D.; Pantaleo, G.; Deganello, G. Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity. Catal. Commun. 2005, 6, 329–336.CrossRefGoogle Scholar
  16. [16]
    Van’t Blik, H. F. J.; Prins, R. Characterization of supported cobalt and cobalt-rhodium catalysts: I. Temperature-programmed reduction (TPR) and oxidation (TPO) of Co-Rh/Al2O3. J. Catal. 1986, 97, 188–199.CrossRefGoogle Scholar
  17. [17]
    Yaremchenko, A. A.; Kharton, V. V.; Veniaminov, S. A.; Belyaev, V. D.; Sobyanin, V. A.; Marques, F. M. B. Methane oxidation by lattice oxygen of CeNbO4+?. Catal. Commun. 2007, 8, 335–339.CrossRefGoogle Scholar
  18. [18]
    Bossche, M. V. D.; McIntosh, S. The rate and selectivity of methane oxidation over La0.75Sr0.25CrxMn1-xO3-? as a function of lattice oxygen stoichiometry under solid oxide fuel cell anode conditions. J. Catal. 2008, 255, 313–323.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Linhua Hu
    • 1
  • Keqiang Sun
    • 1
  • Qing Peng
    • 1
  • Boqing Xu
    • 1
  • Yadong Li
    • 1
  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations