Nano Research

, Volume 3, Issue 5, pp 350–355 | Cite as

Field effects on the statistical behavior of the molecular conductance in a single molecular junction in aqueous solution

Open Access
Research Article

Abstract

We have combined molecular dynamics simulations with first-principles calculations to study electron transport in a single molecular junction of perylene tetracarboxylic diimide (PTCDI) in aqueous solution under external electric gate fields. It is found that the statistics of the molecular conductance are very sensitive to the strength of the electric field. The statistics of the molecular conductance are strongly associated with the thermal fluctuation of the water molecules around the PTCDI molecule. Our simulations reproduce the experimentally observed three orders of magnitude enhancement of the conductance, as well as the temperature dependent conductance, under the electrochemical gates. The effects of the molecular polarization and the dipole rearrangement of the aqueous solution are also discussed.

Keywords

Molecular junction field effect solvent effect temperature effect statistical behavior 

References

  1. [1]
    Song, H.; Lee, T.; Choi, N. J.; Lee, H. A statistical method for determining intrinsic electronic transport properties of self-assembled alkanethiol monolayer devices. Appl. Phys. Lett. 2007, 91, 253116.CrossRefADSGoogle Scholar
  2. [2]
    Hu, Y. B.; Zhu, Y.; Gao, H. J.; Guo, H. Conductance of an ensemble of molecular wires: A statistical analysis. Phys. Rev. Lett. 2005, 95, 156803.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Andrews, D. Q.; van Duyne, R. P.; Ratner, M. A. Stochastic modulation in molecular electronic transport junctions: Molecular dynamics coupled with charge transport calculations. Nano Lett. 2008, 8, 1120–1126.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Lörtscher, E.; Weber, H. B.; Reil, H. Statistical approach to investigating transport through single molecules. Phy. Rev. Lett. 2007, 98, 176807.CrossRefADSGoogle Scholar
  5. [5]
    Cao, H.; Jiang, J.; Ma, J.; Luo, Y. Temperature-dependent statistical behavior of single molecular conductance in aqueous solution. J. Am. Chem. Soc. 2008, 130, 6674–6675.CrossRefPubMedGoogle Scholar
  6. [6]
    Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. Molecular rectification in metal-SAM-metal oxide-metal junctions. J. Am. Chem. Soc. 2009, 131, 17814–17827.CrossRefPubMedGoogle Scholar
  7. [7]
    Yoo. H.; Choi, J.; Wang, G.; King, T. W.; Noh, J.; Lee, T. Statistical analysis of metal-molecule contacts in alkyl molecular junctions: Sulfur versus selenium end-group. J. Nanosci. Nanotech. 2009, 9, 7012–7015.Google Scholar
  8. [8]
    Tao, N. J. Electron transport in molecular junctions. Nat. Nanotechnol. 2006, 1, 173–181.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Xu, B. Q.; Xiao, X. Y.; Yang, X. M.; Zang, L.; Tao, N. J. Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 2005, 127, 2386–2387.CrossRefPubMedGoogle Scholar
  10. [10]
    Li, X. L.; Xu, B. Q.; Xiao, X. Y.; Yang, X. M.; Zang, L.; Tao, N. J. Controlling charge transport in single molecules using electrochemical gate. Faraday Discuss. 2006, 131, 111–120.CrossRefPubMedGoogle Scholar
  11. [11]
    Li, X. L.; Hihath, J.; Chen, F.; Masuda, T.; Zang, L.; Tao, N. J. Thermally activated electron transport in single redox molecules. J. Am. Chem. Soc. 2007, 129, 11535–11542.CrossRefPubMedGoogle Scholar
  12. [12]
    Su, W. Y.; Jiang, J.; Lu, W.; Luo, Y. First-principles study of electrochemical gate-controlled conductance in molecular junctions. Nano Lett. 2006, 6, 2091–2094.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Cerius2, version 3.5; Molecular Simulation Inc.: San Diego, CA 1997.Google Scholar
  14. [14]
    Sun, H. Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules. 1995, 28, 701–712.CrossRefADSGoogle Scholar
  15. [15]
    Jiang, J.; Kula, M.; Luo, Y. A generalized quantum chemical approach for elastic and inelastic electron transports in molecular electronics devices. J. Chem. Phys. 2006, 124, 034708.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Jiang, J.; Luo, Y. QCME-V1.0, Quantum chemistry for molecular electronics; Stockholm, Sweden 2005.Google Scholar
  17. [17]
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery Jr, J. A.; Stratmann, R. E.; Burant, J. C., et al. GAUSSIAN 03, revision A.1; Gaussian, Inc.: Pittsburgh, PA 2003.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Theoretical ChemistrySchool of Biotechnology, Royal Institute of TechnologyStockholmSweden
  2. 2.School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of EducationNanjing UniversityNanjingChina

Personalised recommendations