Nano Research

, Volume 3, Issue 2, pp 69–80 | Cite as

Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties

  • Byungkwon Lim
  • Majiong Jiang
  • Taekyung Yu
  • Pedro H. C. Camargo
  • Younan Xia
Open Access
Research Article


In a seed-mediated synthesis, nanocrystal growth is often described by assuming the absence of homogeneous nucleation in the solution. Here we provide new insights into the nucleation and growth mechanisms underlying the formation of bimetallic nanodendrites that are characterized by a dense array of Pt branches anchored to a Pd nanocrystal core. These nanostructures can be easily prepared by a one-step, seeded growth method that involves the reduction of K2PtCl4 by L-ascorbic acid in the presence of 9-nm truncated octahedral Pd seeds in an aqueous solution. Transmission electron microscopy (TEM) and high-resolution TEM analyses revealed that both homogeneous and heterogeneous nucleation of Pt occurred at the very early stages of the synthesis and the Pt branches grew through oriented attachment of small Pt particles that had been formed via homogeneous nucleation. These new findings contradict the generally accepted mechanism for seeded growth that only involves heterogeneous nucleation and simple growth via atomic addition. We have also investigated the electrocatalytic properties of the Pd-Pt nanodendrites for the oxygen reduction and formic acid oxidation reactions by conducting a comparative study with foam-like Pt nanostructures prepared in the absence of Pd seeds under otherwise identical conditions.


Palladium platinum seeded growth oxygen reduction formic acid oxidation 

Supplementary material

12274_2010_1010_MOESM1_ESM.pdf (2.9 mb)
Supplementary material, approximately 340 KB.


  1. [1]
    Tsuji, M.; Miyamae, N.; Lim, S.; Kimura, K.; Zhang, X.; Hikino, S.; Nishio, M. Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method. Cryst. Growth Des. 2006, 6, 1801–1807.CrossRefGoogle Scholar
  2. [2]
    Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Fan, F. R.; Liu, D. Y.; Wu, Y. F.; Duan, S.; Xie, Z. X.; Jiang, Z. Y.; Tian, Z. Q. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 2008, 130, 6949–6951.CrossRefPubMedGoogle Scholar
  4. [4]
    Xue, C.; Millstone, J. E.; Li, S.; Mirkin, C. A. Plasmondriven synthesis of triangular core-shell nanoprisms from gold seeds. Angew. Chem. Int. Ed. 2007, 46, 8436–8439.CrossRefGoogle Scholar
  5. [5]
    Lim, B.; Wang, J.; Camargo, P. H. C.; Jiang, M.; Kim, M. J.; Xia, Y. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Lett. 2008, 8, 2535–2540.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Tsuji, M.; Matsuo, R.; Jiang, P.; Miyamae, N.; Ueyama, D.; Nishio, M.; Hikino, S.; Kumagae, H.; Kamarudin, K. S. N.; Tang, X. L. Shape-dependent evolution of Au@Ag core-shell nanocrystals by PVP-assisted N,N-dimethylformamide reduction. Cryst. Growth Des. 2008, 8, 2528–2536.CrossRefGoogle Scholar
  7. [7]
    Camargo, P. H. C.; Xiong, Y.; Ji, L.; Zuo, J. M.; Xia, Y. Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails. J. Am. Chem. Soc. 2007, 129, 15452–15453.CrossRefPubMedGoogle Scholar
  8. [8]
    Seo, D.; Yoo, C. I.; Jung, J.; Song, H. Ag-Au-Ag heterometallic nanorods formed through directed anisotropic growth. J. Am. Chem. Soc. 2008, 130, 2940–2941.CrossRefPubMedGoogle Scholar
  9. [9]
    Park, K.; Vaia, R. A. Synthesis of complex Au/Ag nanorods by controlled overgrowth. Adv. Mater. 2008, 20, 3882–3886.CrossRefGoogle Scholar
  10. [10]
    Zhou, S.; McIlwrath, K.; Jackson, G.; Eichhorn, B. Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. J. Am. Chem. Soc. 2006, 128, 1780–1781.CrossRefPubMedGoogle Scholar
  11. [11]
    Peng, Z.; Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2009, 2, 406–415.CrossRefGoogle Scholar
  12. [12]
    Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Peng, Z.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 2009, 131, 7542–7543.CrossRefPubMedGoogle Scholar
  14. [14]
    Cacciuto, A.; Auer, S.; Frenkel, D. Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 2004, 428, 404–406.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Auer, S.; Frenkel, D. Prediction of absolute crystalnucleation rate in hard-sphere colloids. Nature 2001, 409, 1020–1023.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660.CrossRefGoogle Scholar
  17. [17]
    Pastoriza-Santos, I.; Liz-Marzán, L. M. Formation of PVP-protected metal nanoparticles in DMF. Langmuir 2002, 18, 2888–2894.CrossRefGoogle Scholar
  18. [18]
    Shin, H. S.; Yang, H. J.; Kim, S. B.; Lee, M. S. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in gamma-irradiated silver nitrate solution. J. Colloid Interface Sci. 2004, 274, 89–94.CrossRefPubMedGoogle Scholar
  19. [19]
    Ewers, T. D.; Sra, A. K.; Norris, B. C.; Cable, R. E.; Cheng, C. H.; Shantz, D. F.; Schaak, R. E. Spontaneous hierarchical assembly of rhodium nanoparticles into spherical aggregates and superlattices. Chem. Mater. 2005, 17, 514–520.CrossRefGoogle Scholar
  20. [20]
    Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289, 751–754.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191.CrossRefGoogle Scholar
  22. [22]
    Huang, F.; Zhang, H.; Banfield, J. F. The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS. J. Phys. Chem. B 2003, 107, 10470–10475.CrossRefGoogle Scholar
  23. [23]
    Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287.CrossRefPubMedGoogle Scholar
  24. [24]
    Yu, J. H.; Joo, J.; Park, H. M.; Baik, S. I.; Kim, Y. W.; Kim, S. C.; Hyeon, T. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 2005, 127, 5662–5670.CrossRefPubMedGoogle Scholar
  25. [25]
    Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948.CrossRefPubMedGoogle Scholar
  26. [26]
    Halder, A.; Ravishankar, N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 2007, 19, 1854–1858.CrossRefGoogle Scholar
  27. [27]
    Bisson, L.; Boissiere, C.; Nicole, L.; Grosso, D.; Jolivet, J. P.; Thomazeau, C.; Uzio, D.; Berhault, G.; Sanchez, C. Formation of palladium nanostructures in a seed-mediated synthesis through an oriented-attachment-directed aggregation. Chem. Mater. 2009, 21, 2668–2678.CrossRefGoogle Scholar
  28. [28]
    Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Tang, Z.; Zhang, Z.; Wang, Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 2006, 314, 274–278.CrossRefPubMedADSGoogle Scholar
  31. [31]
    Zhang, Z.; Tang, Z.; Kotov, N. A.; Glotzer, S. C. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano Lett. 2007, 7, 1670–1675.CrossRefPubMedADSGoogle Scholar
  32. [32]
    Warren, S. C.; Messina, L. C.; Slaughter, L. S.; Kamperman, M.; Zhou, Q.; Gruner, S. M.; DiSalvo, F. J.; Wiesner, U. Ordered mesoporous materials from metal nanoparticleblock copolymer self-assembly. Science 2008, 320, 1748–1752.CrossRefPubMedADSGoogle Scholar
  33. [33]
    Sharma, J.; Chhabra, R.; Cheng, A.; Brownell, J.; Liu, Y.; Yan, H. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 2009, 323, 112–116.CrossRefPubMedADSGoogle Scholar
  34. [34]
    Witten, T. A.; Sander, L. M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 1981, 47, 1400–1403.CrossRefADSGoogle Scholar
  35. [35]
    Meakin, P.; Stanley, H. E. Spectral dimension for the diffusion-limited aggregation model of colloid growth. Phys. Rev. Lett. 1983, 51, 1457–1460.CrossRefADSGoogle Scholar
  36. [36]
    Song, Y.; Yang, Y. Medforth, C. J.; Pereira, E.; Singh, A. K.; Xu, H.; Jiang, Y.; Brinker, C. J.; Swol, F.; Shelnutt, J. A. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J. Am. Chem. Soc. 2004, 126, 635–645.CrossRefPubMedGoogle Scholar
  37. [37]
    Wang, L.; Yamauchi, Y. Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem. Mater. 2009, 21, 3562–3569.CrossRefGoogle Scholar
  38. [38]
    Vidoni, O.; Philippot, K.; Amiens, C.; Chaudret, B.; Balmes, O.; Malm, J. O.; Bovin, J. O.; Senocq, F.; Casanove, M. J. Novel, spongelike ruthenium particles of controllable size stabilized only by organic solvents. Angew. Chem. Int. Ed. 1999, 38, 3736–3738.CrossRefGoogle Scholar
  39. [39]
    Ely, T. O.; Amiens, C.; Chaudret, B. Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem. Mater. 1999, 11, 526–529.CrossRefGoogle Scholar
  40. [40]
    Pelzer, K.; Vidoni, O.; Philippot, K.; Chaudret, B.; Collière, V. Organometallic synthesis of size-controlled polycrystalline ruthenium nanoparticles in the presence of alcohols. Adv. Funct. Mater. 2003, 13, 118–126.CrossRefGoogle Scholar
  41. [41]
    Bauer, E.; Poppa, H. Recent advances in epitaxy. Thin Solid Films 1972, 12, 167–185.CrossRefADSGoogle Scholar
  42. [42]
    Jiang, Q.; Lu, H. M.; Zhao, M. Modelling of surface energies of elemental crystals. J. Phys.: Condens. Matter 2004, 16, 521–530.CrossRefADSGoogle Scholar
  43. [43]
    Kua, J.; Goddard, W. A. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 1999, 121, 10928–10941.CrossRefGoogle Scholar
  44. [44]
    Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.CrossRefGoogle Scholar
  45. [45]
    Teng, X.; Liang, X.; Maksimuk, S.; Yang, H. Synthesis of porous platinum nanoparticles. Small 2006, 2, 249–253.CrossRefPubMedGoogle Scholar
  46. [46]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefPubMedADSGoogle Scholar
  47. [47]
    Lim, B.; Lu, X.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043–4047.CrossRefPubMedADSGoogle Scholar
  48. [48]
    Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. 2008, 47, 3588–3591.CrossRefGoogle Scholar
  49. [49]
    Schmidt, T. J.; Gasteiger, H. A.; Stäb, G. D.; Urban, P. M.; KoIb, D. M.; Behm, R. J. Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 1998, 145, 2354–2358.CrossRefGoogle Scholar
  50. [50]
    Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 2005, 56, 9–35.CrossRefGoogle Scholar
  51. [51]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; MarkoviĆ, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefPubMedADSGoogle Scholar
  52. [52]
    Arenz, M.; Stamenkovic, V.; Schmidt, T. J.; Wandelt, K.; Ross, P. N.; Markovic, N. M. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces. Phys. Chem. Chem. Phys. 2003, 5, 4242–4251.CrossRefGoogle Scholar
  53. [53]
    Adzic, R. R.; Tripkovic, A. V; O’Grady, W. E. Structural effects in electrocatalysis. Nature 1982, 296, 137–138.CrossRefADSGoogle Scholar
  54. [54]
    Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H. C.; Zhu, Y.; Xia, Y. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189–200.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Byungkwon Lim
    • 1
  • Majiong Jiang
    • 2
  • Taekyung Yu
    • 1
  • Pedro H. C. Camargo
    • 1
  • Younan Xia
    • 1
  1. 1.Department of Biomedical EngineeringWashington UniversitySt. LouisUSA
  2. 2.Department of ChemistryWashington UniversitySt. LouisUSA

Personalised recommendations